
Journal of Applied and Computational Topology (2022) 6:271–322
https://doi.org/10.1007/s41468-022-00087-5

Generalized persistence algorithm for decomposing
multiparameter persistence modules

Tamal K. Dey1 · Cheng Xin1

Received: 10 May 2021 / Revised: 7 October 2021 / Accepted: 30 December 2021 /
Published online: 5 February 2022
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022

Abstract
The classical persistence algorithm computes the unique decomposition of a per-
sistence module implicitly given by an input simplicial filtration. Based on matrix
reduction, this algorithm is a cornerstone of the emergent area of topological data
analysis. Its input is a simplicial filtration defined over the integers Z giving rise to
a 1-parameter persistence module. It has been recognized that multiparameter ver-
sion of persistence modules given by simplicial filtrations over d-dimensional integer
grids Zd is equally or perhaps more important in data science applications. How-
ever, in the multiparameter setting, one of the main challenges is that topological
summaries based on algebraic structure such as decompositions and bottleneck dis-
tances cannot be as efficiently computed as in the 1-parameter case because there is no
known extension of the persistence algorithm to multiparameter persistence modules.
We present an efficient algorithm to compute the unique decomposition of a finitely
presented persistence module M defined over the multiparameter Zd . The algorithm
first assumes that the module is presented with a set of N generators and relations
that are distinctly graded. Based on a generalized matrix reduction technique it runs
in O(N 2ω+1) time where ω < 2.373 is the exponent of matrix multiplication. This is
much better than the well known algorithm called Meataxe which runs in Õ(N 6(d+1))

time on such an input. In practice, persistence modules are usually induced by sim-
plicial filtrations. With such an input consisting of n simplices, our algorithm runs in
O(n(d−1)(2ω+1)) time for d ≥ 2. For the special case of zero dimensional homology,
it runs in time O(n2ω+1).

Keywords Multiparameter persistence · Computational topology · Topological data
analysis · Persistence module · Indecomposables · Matrix reduction · Presentations

B Tamal K. Dey
tamaldey@purdue.edu

Cheng Xin
xinc@purdue.edu

1 Department of Computer Science, Purdue University, West Lafayette, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s41468-022-00087-5&domain=pdf
http://orcid.org/0000-0001-5160-9738

272 T. K. Dey, C. Xin

Mathematics Subject Classification 55-08 · 55U30 · 18G90

1 Introduction

Persistence modules defined over a single parameter such as Z or R have become a
central object of study in topological data analysis (TDA). It is an indexed set of
vector spaces connected by linear maps most commonly arising from applying a
homology functor to a simplicial filtration–another well known construct in TDA.
Under some mild conditions (Oudot 2015), such a module decomposes uniquely
into interval modules called bars. These bars or its equivalent persistence diagrams
encode the input module completely. Naturally, computing these bars from an input
persistence module efficiently becomes an important endeavor in TDA. Starting with
the persistence algorithm (Edelsbrunner et al. 2000), a number of improvements and
extensions have been proposed for computing the bar decompositions in the single
parameter case (Dey and Wang 2022; Edelsbrunner and Harer 2010). However, the
problem in the multi parameter case has not received as much attention. Other than
some specific cases (Botnan et al. 2020; Cai et al. 2020; Cochoy and Oudot 2020;
Dey and Xin 2018), the only known algorithm for the purpose can be derived from
the so-called Meataxe algorithm which applies to much more general modules than
we consider in TDA at the expense of high computational cost. Sacrificing this gen-
erality and still encompassing a large class of modules that appear in TDA, we can
design a much more efficient algorithm. Specifically, we present an algorithm that
can decompose a finitely presented module (unique decomposition is guaranteed by
Krull-Schmidt theorem (Atiyah 1956)) with a time complexity that is far better than
the Meataxe algorithm though we loose the generality as the module needs to be dis-
tinctly graded, that is, no two generators and no two relations in the module have the
same grade. If this condition is not satisfied, a simple observation implies that the
algorithm still produces an output that can be viewed as a decomposition of a module
close to the original one under the interleaving distance.

For measuring algorithmic efficiency, it is imperative to specify how the input
module is presented. Assuming an index set of size m and vector spaces of dimension
O(s), a one-parameter persistence module can be presented by a set of O(s) × O(s)
matrices each representing a linear map Mi → Mi+1 between two consecutive vector
spaces Mi and Mi+1. This input format is costly as it takes O(ms2) space (O(s2)-size
matrix for each index) and also does not appear to offer any benefit in time complexity
for computing the bars. An alternative presentation is obtained by considering the per-
sistence module as a graded module over a polynomial ring k[t] and presenting it with
the so-called generators {gi } of the module and relations {∑i αi gi = 0 | αi ∈ k[t]}
among them. A presentation matrix encoding the relations in terms of the gener-
ators specifies the module completely. Then, a matrix reduction algorithm akin to
the persistence algorithm (Cohen-Steiner et al. 2006) provides the desired decompo-
sition. Figure 1 illustrates the advantage of this presentation over the other costly
presentation. In practice, when the 1-parameter persistence module is given indi-
rectly by a simplicial filtration, one can apply the matrix reduction algorithm directly
on a boundary matrix rather than first computing a presentation matrix from it and

123

Generalized persistence algorithm for decomposing. . . 273

g1 tg1, g2 t2g1, tg2, g3
0 = t2g1 + tg2

t3g1, t
2g2, tg3

0 = t3g1 + t2g2
0 = t2g2 + tg3

t4g1, t
3g2, t

2g3
0 = t4g1 + t3g2
0 = t3g2 + t2g3

1
0

1
0

1
0 1 1() () () 1()

1
1 1

1

(2) (3)
(0)

(1)

(2)

2 2

Fig. 1 Costly presentation (top) versus graded presentation (bottom, right). The top chain can be summa-
rized by three generators g1, g2, g3 at grades (0), (1), (2) respectively, and two relations 0 = t2g1 + tg2,
0 = t2g2 + tg3 at grades (2), (3) respectively. The grades of generators and relations are given by the first
times they appear in the chain. Finally, these information can be summarized succinctly by the presentation
matrix on the right

then decomposing it. If there are O(N) generators (creator simplices) and relations
(destructor simplices), the algorithm runs in O(N 3) time with simple matrix reduc-
tions and in O(Nω) time with more sophisticated matrix multiplication techniques
where ω < 2.373 is the exponent of matrix multiplication.

The Meataxe algorithm for multiparameter persistence modules follows the costly
approach analogous to the one in the one-parameter case that expects the presentation
of each individual linear map explicitly. In particular, It expects the input d-parameter
module M over a finite subset of Zd to be given as a large matrix in kD×D with
entries in a fixed field k = Fq , where D is the sum of dimensions of vector spaces
over all points in Zd supporting M . The time complexity of the Meataxe algorithm is
O(D6 log q) (Holt 1998). In general, D might be quite large. It is not clear what is the
most efficient way to transform an input that specifies generators and relations (or a
simplicial filtration) to a representation matrix required by the Meataxe algorithm. A
naive approach is to consider the minimal sub-grid in Zd that supports the non-trivial
maps. In the worst-case, with N being the total number of generators and relations,
one has to consider O(

(N
d

)
) = O(Nd) grid points in Zd each with a vector space of

dimension O(N). Therefore, D = O(Nd+1) giving a worst-case time complexity of
O(N 6(d+1) log q). Even allowing approximation, the algorithm (Holt and Rees 1994)
runs in O(N 3(d+1) log q) time.

We take the alternate approach where the module is treated as a finitely presented
graded module over multivariate polynomial ring R = k[t1, . . . , td] (Corbet and Ker-
ber 2018) and presented with a set of generators and relations graded appropriately.
The fact that the persistence modules in TDA can be modeled as a graded module
studied in algebraic geometry and commutative algebra (Eisenbud 2005; Miller and
Sturmfels 2004) was recognized in Carlsson et al. (2009), Carlsson and Zomoro-
dian (2009), Knudson (2007) and further studied in Lesnick (2015) and Lesnick and
Wright (2019). Given a presentation matrix encoding relations with generators, our
algorithm computes a diagonalization of the matrix giving a presentation of each
module called indecompsable which the input module decomposes into. These inde-
composables are the higher dimensional analogues of the bars. Compared to the
one-parameter case, we have to cross two main barriers for computing the indecom-
posables. First, we need to allow row operations along with column operations for
reducing the input matrix. In one-parameter case, row operations become redundant
because column operations already produce the bars. Second, differently from the

123

274 T. K. Dey, C. Xin

one-parameter case, we cannot allow all left-to-right column or bottom-to-top row
operations for the matrix reduction because the parameter space Zd , d > 1, unlike Z
only induces a partial order on these operations. We show how these two difficulties
can be overcome by an incremental approach combined with a linearization trick.
Given a presentation matrix with a total of N generators and relations that are graded
distinctly, our algorithm runs in O(N 2ω+1) time. Surprisingly, the complexity does
not depend on the parameter d.

In practice, we are often given a simplicial filtration instead of a presentation
matrix relating the generators of the induced persistence module. In this case, one
has to compute presentation matrices from the input filtration of a complex consisting
of n simplices. For 2-parameter persistence modules, we can compute a presentation
matrix of size O(n) × O(n) using the algorithm of Lesnick and Wright (2019) in
O(n3) time whereas for d-parameter persistence modules, we can adapt an algorithm
of Skryzalin (2016) to compute the presentation in O(nd+1) time. For d ≥ 2, this
algorithm produces a presentation matrix of dimension O(nd−1) × O(nd−1). There-
fore, with N = O(nd−1), the decomposition algorithm takes O(n(d−1)(2ω+1)) time.
Combining the costs for computing a presentation and its decomposition, the time
complexity of our algorithm becomes O(n(d−1)(2ω+1)) for d ≥ 2. The time complex-
ity of the Meataxe algorithm remains the same, O(n6(d+1) log q), with a simplicial
filtration consisting of n simplices because the highest dimension of the vector space
at each grid point is O(n). Our algorithm is better than the Meataxe algorithm in this
case too.

As a generalization of the traditional persistence algorithm, it is expected that our
algorithm can be interpreted as computing invariants such as persistence diagrams
(Cohen-Steiner et al. 2007) or barcodes (Zomorodian and Carlsson 2005). A road-
block to this goal is that d-parameter persistence modules do not have complete
discrete invariants for d ≥ 2 (Carlsson and Zomorodian 2009; Lesnick 2015). Conse-
quently, one needs to invent other invariants suitable for multiparameter persistence
modules. A natural way to generalize the invariant in traditional persistent homology
would be to consider the decomposition and take the discrete invariants in each inde-
composable component. This gives us invariants which are no longer complete but
still contain rich information.

We offer two interpretations of the output of our algorithm as two different invari-
ants: persistent graded Betti numbers as a generalization of persistence diagrams and
blockcodes as a generalization of barcodes. The persistent graded Betti numbers are
linked to the graded Betti numbers studied in commutative algebra, which is intro-
duced in TDA for multiparameter persistence modules in the work of Carlsson and
Zomorodian (2009) and Knudson (2007). The bigraded Betti numbers are further
studied in Lesnick and Wright (2019). By constructing the free resolution of a persis-
tence module, we can compute its graded Betti numbers and then decompose them
according to each indecomposable module, which results into the presistent graded
Betti numbers. For each indecomposable, we apply the dimension function which is
also known as the Hilbert function in commutative algebra to summarize the graded
Betti numbers for each indecomposalbe module. This constitutes a blockcode for the
indecomposable module of the persistence module. The blockcode is a good vehi-

123

Generalized persistence algorithm for decomposing. . . 275

cle for visualizing lower dimensional persistence modules such as 2- or 3-parameter
persistence modules.

1.1 Other related work

Since it is known that there is no complete discrete invariant for multiparameter
persistence, researchers have proposed various reasonable summaries that can be
computed in practice, along with pseudo-distances and different kinds of stability
properties. Among them the rank invariant proposed by Carlsson et al. (2009) and
Carlsson and Zomorodian (2009) is a popular one. Cerri et al. (2013) propose multi-
parameter persistent Betti number as a stable invariant. Later, it is generalized to the
so-called generalized rank invariant and proved to be stable under erosion distance
(Patel 2016; Kim and Mémoli 2021). See also Dey et al. (2021) for its compu-
tation. Lesnick and Wright introduce the computational tool of fibered barcode in
Lesnick andWright (2015) and Lesnick andWright (2019) as an interactive vehicle to
visualize the one-parameter restriction of biparameter persistence modules. Recently,
interval decomposition with possibly negative multiplicity has been studied in Botnan
et al. (2021) and Asashiba et al. (2021).

Another related line of work focuses on defining distances and their stabili-
ties in the space of multiparameter persistence modules. The interleaving distance
(Bjerkevik and Botnan 2017; Bjerkevik et al. 2020; Bjerkevik 2016; Lesnick 2015),
multi-matching distance (Cerri et al. 2018), and erosion distance (Patel 2016; Kim
and Mémoli 2021) are some of the work to mention a few. The relation between
interleaving distance and bottleneck distance is studied in Bjerkevik (2016), Botnan
and Lesnick (2018) and Buchet and Escolar (2019). On the computational front, Dey
and Xin (2018) showed that the bottleneck distance can be computed in polynomial
time for the special cases of interval decomposable modules though the general prob-
lem is proved to be NP-hard (Bjerkevik and Botnan 2017; Bjerkevik et al. 2020). A
recent work of Kerber et al. (2019) shows that the matching distance can be computed
efficiently in polynomial time.

1.2 Outline

The rest of the paper is organized as follows. In Sect. 2, we introduce some back-
ground materials on persistence modules in the language of graded modules. In
Sect. 3, we introduce the presentation of a persistence module and its presentation
matrix which assists in computing the decomposition of persistence modules. The
1-1 correspondence between the decompositions of the persistence module and its
presentation is a fundamental fact which is presented as our first main theorem. Based
on this correspondence, we observe that two main computational problems need to be
solved, (i) compute the decomposition of the presentation matrix, and (ii) construct
a valid presentation. In Sect. 4, we handle the first problem by designing an algo-
rithm for computing a decomposition of the presentation matrix. We observe that this
problem can be transformed to a what we call generalized matrix reduction problem.
Based on that, we propose an algorithm to solve this problem and prove the correct-

123

276 T. K. Dey, C. Xin

ness of our algorithm, and illustrate it with an example. In Sect. 5, we introduce the
strategies for the second problem of computing presentations and analyze the total
time complexity for computing presentations together with the matrix reduction. In
Sect. 6, we give two interpretations of the results of our decomposition of persistence
modules as two different invariants, persistent graded Betti numbers as a general-
ization of persistence diagrams and blockcodes as a generalization of barcodes. In
Sect. 7, we conclude with suggesting some future direction.

2 Persistencemodules

We want to study the total decomposition of a persistence module arising from a
simplicial filtration in the multiparameter setting. We first present some preliminary
concepts from commutative algebra that lay the foundation of this work. For more
details on multiparameter persistent homology and commutative algebra, we refer
the readers to Bruns and Herzog (1998), Carlsson and Zomorodian (2009), Cox et al.
(2006) and Miller and Sturmfels (2004). Mainly, we need the concept of graded mod-
ules because as in Carlsson and Zomorodian (2009) we treat the familiar persistence
modules in topological data analysis as graded modules. Let R = k[t1, . . . , td] be
the d-variate Polynomial ring for some d ∈ Z+ with k being a field. Throughout this
paper, we assume coefficients are in k. Hence homology groups are vector spaces.

Definition 1 A Zd -graded R-module (Graded module in brief) is an R-module M
that is a direct sum of k-vector spaces Mu indexed by u ∈ Zd , i.e. M =1 ⊕

u Mu
such that the ring action satisfies that ∀i,∀u ∈ Zd , ti · Mu ⊆ Mu+ei , where {ei }di=1 is
the standard basis in Zd .

Another interpretation of graded module is that, for each u ∈ Zd , the action of ti on
Mu determines a linear map ti• : Mu → Mu+ei by (ti•)(m) = ti ·m. So, we can also
describe a graded module equivalently as a collection of vectors spaces {Mu}u∈Zd

with a collection of linear maps {ti• : Mu → Mu+ei ,∀i,∀u} where the commutative
property (t j•) ◦ (ti•) = (ti•) ◦ (t j•) holds. The commutative diagram in Fig. 2 shows
a graded module for d = 2, also called a bigraded module.

Remark 1 Notice that R can always be viewed as an R-module. For example, the
polynomial ring R = k[t1, . . . , td] itself can be viewed as a graded R-module with Ru
being the k-vector space consisting of all monomials αtu = α · tu11 tu22 · · · tudd , α ∈ k.
The additions and multiplications are given by polynomial operations.

We call a graded module M finitely generated if there exists a finite set of elements
{g1, . . . , gn} ⊆ M such that each element m ∈ M can be written as an R-linear
combination of these elements, i.e. m = ∑n

i=1 αi gi with αi ∈ R. We call this set {gi }
a generating set of M . In this paper, we assume that all modules are finitely generated.
Such modules always admit a minimal generating set.

1 Here the two sides are equal as graded k-vector spaces.

123

Generalized persistence algorithm for decomposing. . . 277

· · · · · · · · ·

· · · M0,2 M1,2 M2,2 · · ·

· · · −→ M0,1 M1,1 M2,1 · · ·

· · · M0,0 M1,0 M2,0 · · ·

· · · ↑ · · ·

t2•
t1•

t1•

t2• t1•t2•

t22•

t21•

t1•

t2•

Fig. 2 A graded 2-parameter module. All sub-diagrams of maps and compositions of maps are commuta-
tive

Definition 2 A graded module morphism, called morphism in short, between two
modules M and N is defined as an R-linear map f : M → N preserving grades:
f (Mu) ⊆ Nu,∀u ∈ Zd . Equivalently, it can also be described as a collection of lin-
ear maps { fu : Mu → Nu} which gives the following commutative diagram for each
u and i :

Mu Mu+ei

Nu Nu+ei

ti

fu fu+ei

ti

Two graded modules M, N are isomorphic if there exist two morphisms f : M → N
and g : N → M such that g ◦ f and f ◦ g are identity maps.

Definition 3 (Shifted module) For a graded module M and a grade point x ∈ Zd ,
a shifted module M→x is defined by (M→x)u = Mu−x for all u ∈ Zd . The linear
maps (M→x)u → (M→x)v are the same as linear maps Mu−x → Mv−x in M for all
comparable u ≤ v.

For the following definition, recall Remark 1 for the module R.

Definition 4 (Free module) We say a graded module is free if it is isomorphic to the
direct sum of a collection of R→u j ’s for some u j ’s in Zd , denoted as

⊕
j R→u j .

Notice that R, viewed as an R-module, is the simplest free module.

Definition 5 (Homogeneous) We say an element m ∈ M is homogeneous if m ∈ Mu
for some u ∈ Zd . We denote gr(m) = u as the grade of such homogeneous element.
To emphasize the grade of a homogeneous element, we also write mgr(m) := m.

A minimal generating set of a free module is called a basis. We usually further require
that all the elements in a basis, also called generators, are homogeneous. For a free
module F 	 ⊕

j R→u j , {e j : j = 1, 2, · · · } is a homogeneous basis of F , where e j

123

278 T. K. Dey, C. Xin

Fig. 3 The working example on
a 2-parameter simplicial
filtrations. Each square box
indicates what is the current
(filtered) simplical complex at
the grade of the box. It has one
connected component in 0th
homology groups at grades
except (0, 0) and (1, 1), and has
two connected components at
grade (1, 1)

indicates the multiplicative identity in R→u j . The generating set {e j : j = 1, 2, · · · }
is often referred to as the standard basis of

⊕
j R→u j =< {e j : j = 1, 2, · · · } >.

A d-parameter persistence module is a graded R-module obtained by applying the
homology functor with some field k on a d-parameter simplical filtration defined
below. In this paper, it can be treated as a synonym for a Zd -graded R-module.
Formally, a (d-parameter) simplicial filtration is a family of simplicial complexes
{Xu}u∈Zd such that for each grade u ∈ Zd and each i = 1, . . . , d, Xu ⊆ Xu+ei .
We obtain a simplicial chain complex (C·(Xu), ∂·) for each Xu in this simplicial
filtration. For each chain complex C·(Xu), we have the cycle spaces Z p(Xu)’s and
boundary spaces Bp(Xu)’s as kernels and images of boundary maps ∂p’s respec-
tively, and the homology group Hp(Xu) = Z p(Xu)/Bp(Xu) as the cokernel of the
inclusion maps Bp(Xu) ↪→ Z p(Xu). Taking Mu = Hp(Xu) and the linear maps
Hp(Xu) → Hp(Xv) induced by inclusions Xu ⊆ Xv define a d-parameter persis-
tence module. More details of this construction is given later in Sect. 5.

For illustration purpose, we describe a working example of a 2-parameter per-
sistence module induced from a 2-parameter simplicial filtration shown in Fig. 3.
We will use this example throughout to show its induced persistence module and
computational results of our algorithm. Later, when we mention an example without
reference, we refer to this working example.

Example 1 (Working example) One common way to obtain a simplicial filtration in
practice is to apply a one-critical (Sect. 5) filtration function f : X → Zd on some
simplicial complex X , for which the sublevel sets {Xu := f −1(−∞,u]}u∈Rn consti-
tute a simplicial filtration.

For example, let X be a simplicial 1-complex with 0-simplices consisting of three
vertices, blue vertex vb, red vertex vr , and green vertex vg , connected by three edges,
blue edge eb, red edge er , and green edge eg as 1-simplices. Assign a filtration func-
tion f : X → Z2 as follows:

f (vb) = (0, 1), f (vr) = (1, 0), f (vg) = (1, 1)

f (eb) = (1, 2), f (er) = (1, 1), f (eg) = (2, 1)

Based on this filtration function, the subcomplex Xu for each u ∈ Z2 is illus-
trated in Fig. 3. Take vertices as basis of each C0(Xu) and edges as basis of C1(Xu).
Recall that to emphasize the grades, we denote vu∗ ∈ C0(Xu) to be the basic element

123

Generalized persistence algorithm for decomposing. . . 279

in the vector space C0(Xu). All these vu∗ are homogeneous element in the graded
module C0(X). For each vertex v∗ ∈ {vb, vr , vg}, there is a unique smallest grade

gr(v∗) � f (v∗) such that v
gr(v∗)∗ is a homogeneous basic element in C0(Xgr(v∗)) and

u′ � gr(v∗)
⇒ v∗ /∈ C0(Xu′). We call this grade gr(v∗) the birth time of v∗.
Then for all u ≥ gr(v∗), by the definition of scaler multiplication of graded mod-
ules, tu−gr(v∗)vgr(v∗)∗ = vu∗ ∈ C0(Xu) is the image of v

gr(v∗)∗ under the inclusion map
C0(Xgr(v∗)) ↪→ C0(Xu), which is the homogeneous basis element of C0(Xu) corre-
sponding to the vertex v∗. We can see that for each u ∈ Z2, the vector space C0(Xu)

is generated by all vu∗ = tu−gr(v∗)vgr(v∗)∗ such that v∗ is born before or at u, which

means gr(v∗) ≤ u. In fact, C0(X) is a free module and {vgr(vb)b , v
gr(vr)
r , v

gr(vg)
g } forms

a basis of C0(X). That means, any element of C0(X) can be written as a R-linear
combination of these v

gr(v∗)∗ ’s and all these v
gr(v∗)∗ ’s are linearly independent.

Similarly, for each e∗ ∈ {eb, er , eg}, we have the earliest basic element egr(e∗)∗ of

C1(Xgr(e∗)) for gr(e∗) � f (e∗). The set {egr(eb)b , egr(er)r , e
gr(eg)
g } forms a basis of the

free module C1(X). Furthermore, by the commutative property of morphisms, we
have for each u ≥ gr(e∗),

∂1,u(e
u∗) = ∂1,u(tu−gr(e∗)egr(e∗)∗) = tu−gr(e∗)◦∂1,gr(e∗)(e∗) = tu−gr(e∗)◦∂1(e

gr(e∗)∗) (1)

In fact, as a morphism between two free modules, ∂1 is fully determined by ∂1(e∗).
Consider, for example, the red edge er connecting vb and vr . With the field chosen to
be F2, one has ∂1(e

gr(er)
r) = ∂1(e

(1,1)
r) = v

(1,1)
b + v

(1,1)
r = t(1,0)v(0,1)

b + t(0,1)v(1,0)
r .

Similar for ∂1(e
(1,2)
b) and ∂1(e

(2,1)
g). Therefore, ∂1 can be represented as a matrix with

entries in R = k[t] as follows:

⎛

⎜
⎝

[∂1] e(1,1)
r e(1,2)

b e(2,1)
g

v
(0,1)
b t(1,0) t(1,1) 0

v
(1,0)
r t(0,1) 0 t(1,1)

v
(1,1)
g 0 t(0,1) t(1,0)

⎞

⎟
⎠

Now consider the 0th persistence homology module induced from boundary mor-
phism ∂1 : C1(X) → C0(X). Note that the 0th homology is a space of connected
components. For each u, H0(Xu) = Z0(Xu)

B0(Xu)
= C0

im ∂1,u
. With bases of C0 and C1 cho-

sen above, the persistence module for H0 restricted to grades from (0, 0) (bottom-left
corner) to (2, 2) (top-right corner) can be described as the following diagram (also
illustrated differently in Fig. 4):

123

280 T. K. Dey, C. Xin

Fig. 4 A different depiction of the persistence module whose presentation matrix [∂1] is described in the
working example. Here the generators and the relations (see Sect. 3) among them are highlighted

k k k

k k2 k

0 k k

1 1

1

[1,0]�

[1,1]

[1,1]

1

0

0

1

[1,0]� 1

In what follows, we take the liberty of omitting X and p if they are clear from the
context. Thus, we may denote Z p(X), Bp(X), and Hp(X) as Z , B and H respec-
tively.

Definition 6 (decomposition) For a finitely generated module M , we call M 	 ⊕
Mi

a decomposition of M for some collection of modules {Mi }. We say a module M is
indecomposable if M 	 M1 ⊕ M2
⇒ M1 = 0 or M2 = 0. By the Krull-
Schmidt theorem (Atiyah 1956), there exists an essentially unique (up to permutation
and isomorphism) decomposition M 	 ⊕

Mi with every Mi being indecomposable.
We call it the total decomposition of M .

123

Generalized persistence algorithm for decomposing. . . 281

For example, the free module R is generated by < e(0,0)
1 > and the free module

R→(0,1) ⊕ R→(1,0) is generated by < e(0,1)
1 , e(1,0)

2 >. A free module M generated by

< e
u j
j : j = 1, 2, · · · > has a (total) decomposition M 	 ⊕

j R→u j .

Definition 7 Two morphisms f : M → N and f ′ : M ′ → N ′ are isomorphic,
denoted as f 	 f ′, if there exist isomorphisms g : M → M ′ and h : N → N ′ such
that the following diagram commutes:

M N

M ′ N ′

f

g	 h	
f ′

Essentially, like isomorphic modules, two isomorphic morphisms can be considered
the same. For two morphisms f1 : M1 → N 1 and f2 : M2 → N 2, there exists a
canonical morphism g : M1 ⊕ M2 → N 1 ⊕ N 2, g(m1,m2) = (f1(m1), f2(m2)),
which is essentially uniquely determined by f1 and f2 and is denoted as f1 ⊕ f2.
We denote a trivial module by bold 0, and a trivial morphism by 0. Analogous to the
decomposition of a module, we can also define a decomposition of a morphism.

Definition 8 A morphism f is indecomposable if f 	 f1 ⊕ f2
⇒ f1 or f2 is the
trivial morphism 0 : 0 → 0. We call f 	 ⊕

fi a decomposition of f . If each fi is
indecomposable, we call it a total decomposition of f .

Like decompositions of modules, the total decompositions of a morphism is also
essentially unique.

3 Presentation and its decomposition

To study total decompositions of persistence modules as graded modules, we borrow
the idea of presentations of graded modules and build a bridge between decomposi-
tions of persistence modules and corresponding presentations. The later ones can be
transformed to a matrix reduction problem with possibly nontrivial constrains which
we will introduce in Sect. 4. Our first main result is that there are 1-1 correspondences
among decomposition of persistence modules, decomposition of presentations, and
diagonalization of presentation matrices. Recall that we assume all modules here are
finitely generated. A graded module, hence a persistence module, accommodates a
description called free presentation that aids finding its decomposition.

Definition 9 (presentation) A (free) presentation of a graded module H is an exact

sequence F1 F0 H 0.
f

with F0, F0 being free modules. We call f
a presentation map. We say a graded module H is finitely presented if there exists a
presentation of H with both F1 and F0 being finitely generated.

It follows from the definition that a presentation of H is determined by the presen-
tation map f where coker f 	 H .

123

282 T. K. Dey, C. Xin

Remark 2 Presentations of a given graded module are not unique. However, there
exists an essentially unique (up to isomorphism) presentation f of a graded module in
the sense that any presentation f ′ of that module can be written as f ′ 	 f ⊕ f ′′ with
coker f ′′ = 0. This unique presentation is called the minimal presentation. See more
details of the construction and properties of minimal presentation in Appendix A1.

Fixed bases of nonzero free modules F1 and F0 provide a matrix form [f] of the
presentation map f whose entries are in R, which we call a presentation matrix of
H . In the special case that H is a free module with F1 being a zero module, we
define the presentation matrix [f] of H to be a null column matrix with matrix size
� × 0 for some � ∈ N. An important property of a persistence module H is that
a decomposition of its presentation f corresponds to a decomposition of H itself.
The decomposition of f can be computed by diagonalizing its presentation matrix
[f]. Informally, a diagonalization of a matrix A is an equivalent matrix A′ in the
following form (see formal Definitions 10 and 11 later):

A′ =

⎡

⎢
⎢
⎢
⎣

A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...

0 0 · · · Ak

⎤

⎥
⎥
⎥
⎦

All nonzero entries are in Ai ’s and we write A 	 ⊕
Ai . It is not hard to see

that for a map f 	 ⊕
fi , there is a corresponding diagonalization [f] 	 ⊕[fi].

With these definitions and the fact that persistence modules are graded modules, we
have the following theorem that motivates our decomposition algorithm (proof in
“Appendix A”).

Theorem 1 There are 1-1 correspondences between the following three structures
arising from a minimal presentation map f : F1 → F0 of a persistence module H,
and its presentation matrix [f]:
1. A decomposition of the persistence module H 	 ⊕

Hi ;
2. A decomposition of the presentation map f 	 ⊕

fi
3. A diagonalization of the presentation matrix [f] 	 ⊕[f]i
Remark 3 In practice, we might be given a presentation which is not necessarily min-
imal. One way to handle this case is to compute the minimal presentation of the
given presentation first. For 2-parameter modules, this can be done by the algorithm
in Lesnick and Wright (2019). The other choice is to compute the decomposition of
the given presentation (not necessarily minimal) directly, which is sufficient to get the
decomposition of the module thanks to the following proposition (proof at the end of
“Appendix A”).

Proposition 1 Let f be any presentation of a graded module H.

1. For a decomposition of H 	 ⊕
Hi , there exists a decomposition of f 	 ⊕ f i so

that coker f i = Hi ,∀i .
2. The total decomposition of H follows from the total decomposition of f .

123

Generalized persistence algorithm for decomposing. . . 283

Remark 4 By Remark 2, any presentation f can be written as f 	 f ∗ ⊕ f ′ with f ∗
being the minimal presentation and f ′ has trivial cokernel, coker f ′ = 0. Further-
more, f ′ can be written as f ′ 	 g ⊕ h where g is an identity map and h is a zero
map. The corresponding matrix form is [f ′] 	 [f ∗] ⊕ [g] ⊕ [h] with [g] being an
identity submatrix and [h] being a collection of zero column vectors. Therefore, one
can easily read these trivial parts from the result of matrix diagonalization if it is total,
meaning that none of its constituents (Ai s) can be decomposed (diagonalized) further
(Definition 11). See the following diagram for an illustration.

[f] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f ∗ g h

[f ∗]

1
1
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

It follows from Theorem 1 that we can address the decomposition problem of a
persistence module by computing the diagonalization of its presentation matrix. Each
row ri and column c j of [f] represents a generator gi and a relation s j respectively
where [f]i j = αi j if s j = ∑

i αi j gi for αi j ∈ R. We label the rows and columns
with the grades of the elements they represent, that is, gr(ri) := gr(gi) and gr(c j) :=
gr(s j). Furthermore, we can simplify [f] by observing that αi j has the form αi j =
k · tu11 tu22 where k ∈ k and u = (u1, u2) = gr(c j) − gr(ci). For all homogeneous
transformations of bases, only the value of k changes in αi j . Therefore, we can replace
αi j with the value of k. When k = F2, it is either 0 or 1. See the matrices in Example 2
given in Sect. 4.1. Under this simplification, we get a simpler matrix over the field F2
with the following operations for matrix transformations as summarized below:

1. [f]i j = 1 if and only if αi j = 1 in the relation s j = ∑
i αi j gi .

2. A column ci can be added to column c j , denoted as ci → c j , called a valid column
operation, only if i �= j and gr(ci) ≤ gr(c j). A row ri can be added to row r j ,
denoted ri → r j , called a valid row operation, only if i �= j and gr(r j) ≤ gr(ri).

We describe this simplification procedure in details in the next section.

4 Computing decomposition

In this section, we present an algorithm for computing a total decomposition of a
distinctly graded module, which means that no two columns and no two rows in the
presentation matrix have the same grades. All modules are assumed to be finitely pre-
sented and we take k = F2 for simplicity though our method can be easily extended
to work for any finite field. We have observed that a total decomposition of a module
can be achieved by computing a total decomposition of its presentation f . This in

123

284 T. K. Dey, C. Xin

turn means a total diagonalization of the presentation matrix [f]. Here we formally
define some notations about the diagonalization.

Given an � × m matrix A = [Ai, j], with row indices Row(A) = [�] :=
{1, 2, . . . , �} and column indices Col(A) = [m] := {1, 2, . . . ,m}, we define an
index block B of A as a pair

[
Row(B), Col(B)

]
with Row(B) ⊆ Row(A),Col(B) ⊆

Col(A). We say an index pair (i, j) is in B if i ∈ Row(B) and j ∈ Col(B), denoted as
(i, j) ∈ B. We denote a block of A on B as the matrix restricted to the index block B,
i.e. [Ai, j](i, j)∈B , denoted as A|B . We call B the index of the block A|B . We abuse the
notations Row(A|B) := Row(B) and Col(A|B) := Col(B). For example, the i th row
ri = Ai,∗ = A|[{i},Col(A)] and the j th column c j = A∗, j = A|[Row(A),{ j}] are blocks
with indices

[{i},Col(A)] and [
Row(A), { j}] respectively. Specifically, [∅, { j}] rep-

resents an index block of a single column j and [{i},∅] represents an index block of
a single row i . We call [∅,∅] the empty index block.

A morphism can have presentation matrices in different equivalent forms depend-
ing on the bases chosen.

Definition 10 We say a matrix A′ is equivalent to A, denoted as A′ ∼ A, if they
present the same morphism.

Definition 11 A matrix A′ ∼ A is called a diagonalization of A with a set of
nonempty index blocks B = {B1, B2, . . . , Bk} if rows and columns of A are parti-
tioned into these blocks, i.e., Row(A) = ∐

i Row(Bi) and Col(A) = ∐
i Col(Bi), and

all the nonzero entries of A′ have indices in some Bi . We write A′ = ⊕
Bi∈B A′|Bi .

We say A′ = ⊕
Bi∈B A′|Bi is total if no block in this diagonalization can be decom-

posed further into smaller nonempty blocks. That means, for each block A′|Bi , there
is no nontrivial diagonalization. Specifically, when A is a null column matrix (the
presentation matrix of a free module), we say A is itself a total diagonalization with
index blocks {[{i},∅] | i ∈ Row(A)}.

Note that each nonempty matrix A has a trivial diagonalization with the set
of index blocks being {(Row(A),Col(A))}. Guaranteed by Krull-Schmidt theorem
(Atiyah 1956), all total diagonalizations are unique up to permutations of their rows
and columns, and equivalent transformation within each block. The total diagonaliza-
tion of A is denoted generically as A∗. All total diagonalizaitons of A have the same
set of index blocks, denoted as B∗, unique up to permutations of rows and columns.

4.1 Simplification of presentationmatrix

First we want to transform the diagonalization problem to an equivalent problem
that involves matrices with a simpler form. The idea is to simplify the presentation
matrix to have entries only in k. There is a correspondence between diagonalizations
of the original presentation matrix and certain constrained diagonalizations of the
corresponding transformed k-matrix under this subset of basic operations.

Inspired by the ideas from Carlsson and Zomorodian (2009), we first make some
observations about the homogeneous property of presentation maps and presentation
matrices. Equivalent matrices actually represent isomorphic presentations f ′ 	 f
that admit commutative diagram,

123

Generalized persistence algorithm for decomposing. . . 285

F1 F0

F1 F0

f

h1	 h0	
f ′

where h1 and h0 are endomorphisms on F1 and F0 respectively. The endomor-
phisms are realized by basis changes between corresponding presentation matrices
[f] 	 [f ′]. Since all morphisms between graded modules are required to be homo-
geneous by definition, we can use homogeneous bases (all the basis elements chosen
are homogeneous elements2) for F0 and F1 to represent matrices, say F0 =<

g1, . . . , gn > and F1 =< s1, . . . , sm >. Therefore, for simplicity we can consider
only equivalent presentation matrices under homogeneous basis changes. Each entry
[f]i, j is also homogeneous. That means, [f]i, j = tu with u = gr(s j) − gr(gi). We
call such presentation matrix homogeneous presentation matrix.

For example, given F0 =< g(1,1)
1 , g(2,2)

2 >, the basis change g(2,2)
2 ← g(2,2)

2 +
g(1,1)
1 is not homogeneous since g(2,2)

2 + g(1,1)
1 is no longer a homogeneous ele-

ment. However, g(2,2)
2 ← g(2,2)

2 + t(1,1)g(1,1)
1 is a homogeneous change with

gr(g(2,2)
2 + t(1,1)g(1,1)

1) = gr(g(2,2)
2) = (2, 2), which results in a new homoge-

neous basis, {g(1,1)
1 , g(2,2)

2 + t(1,1)g(1,1)
1 }. Homogeneous basis changes always result

in homogeneous bases.

Notation. Let [f] be a homogeneous presentation matrix of f : F1 → F0 with
homogeneous bases F0 =< g1, . . . , gn > and F1 =< s1, . . . , sm >. We extend
the notation of grading to every row ri and every column c j from the basis elements
gi and s j they represent respectively, that is, gr(ri) := gr(gi) and gr(c j) := gr(s j).
We define a partial order ≤gr on rows {ri } by asserting ri ≤gr r j iff gr(ri) ≤ gr(r j).
Similarly, we define a partial order on columns {c j }.

For such a homogeneous presentation matrix [f], we have the following observa-
tions:

1. gr([f]i, j) = gr(c j) − gr(ri)
2. a nonzero entry [f]i, j can only be zeroed out by column operations from columns

ck ≤gr c j or by row operations from rows r� ≥gr ri .

Observation (2) indicates which subset of column and row operations is sufficient
to zero out the entry [f]i, j . We restate the diagonalization problem as follows:

Given an n × m homogeneous presentation matrix A = [f] consisting of entries
in k[t1, . . . , td] with grading on rows and columns, find a total diagonalization of A
under the following admissible row and column operations:

– multiply a row or column by nonzero α ∈ k; (For k = F2, we can ignore these
operations).

– for two rows ri , r j with j �= i and r j ≤gr ri , set r j ← r j + tu · ri where
u = gr(ri) − gr(r j)

– for two columns ci , c j with j �= i and ci ≤gr c j , set c j ← c j + tv · ci where
v = gr(c j) − gr(ci)

2 Recall that an element m ∈ M is homogeneous with grade gr(m) = u for some u ∈ Zd if m ∈ Mu.

123

286 T. K. Dey, C. Xin

The above operations realize all possible homogeneous basis changes. That means,
any homogeneous presentation matrix can be realized by a combination of the above
operations.

In fact, the values of nonzero entries in the matrix are redundant under the homoge-
neous property gr(Ai, j) = gr(c j)−gr(ri) given by observation (1). So, we can further
simplify the matrix by replacing all the nonzero entries with their k-coefficients only.
For example, we replace 2·tu with 2. What really matters are the partial orders defined
by the grading of rows and columns. With our assumption of k = F2, all nonzero
entries are replaced with 1. Based on above observations, we further simplify the
diagonalization problem to be the one as follows.

Given a k-valued matrix A with a partial order on rows and columns, find a total
diagonalization A∗ ∼ A with the following admissible operations:

– multiply a row or column by nonzero α ∈ k; (For k = F2, we can ignore these
operations).

– Add ci to c j only if j �= i and gr(ci) ≤ gr(c j); denoted as ci → c j .
– Add rk to rl only if l �= k and gr(r�) ≤ gr(rk); denoted as rk → rl .

The assumption of k = F2 allows us to ignore the first set of multiplication oper-
ations on the binary matrix obtained after transformation. Also, with the assumption
of distinct grading, the second two sets of admissible operations become:

– Add column ci to column c j , denoted as ci → c j , only if gr(ci) < gr(c j).
– Add row ri to row r j , denoted ri → r j , only if gr(ri) > gr(r j).

We denote the set of all admissible column and row operations as

Colop ={(i, j) | ci → c j is an admissible column operation},
Rowop ={(k, l) | rk → rl is an admissible row operation}.

Under the assumption that no two columns nor rows have same grades, Colop and
Rowop are closed under transitive relation.

Proposition 2 (i, j), (j, k) ∈ Colop (Rowop)
⇒ (i, k) ∈ Colop (Rowop).

Given a solution of the diagonalization problem in the simplified form, one can
reconstruct a solution of the original problem on the presentation matrix by reversing
the above process of simplification. We will illustrate it by running our algorithm on
the working Example 1 at the end of this section. The matrix reduction we employ
for diagonalization may be viewed as a generalized matrix reduction because the
matrix is reduced under constrained operations Colop and Rowop which might be a
nontrivial subset of all basic operations.

Remark 5 There are two extreme but trivial cases: (i) there are no ≤gr-comparable
pair of rows and columns. In this case, Colop = Rowop = ∅ and the original matrix
is a trivial solution. (ii) All pairs of rows and all pairs of columns are ≤gr-comparable.
Or equivalently, both Colop and Rowop are totally ordered. In this case, one can apply
traditional matrix reduction algorithm to reduce the matrix to a diagonal matrix with
all nonzero blocks being 1×1 minors. This is also the case for traditional 1-parameter

123

Generalized persistence algorithm for decomposing. . . 287

persistence module if one further applies row reduction after column reduction. Note
that row reductions are not necessary for reading out persistence information because
it essentially does not change the persistence information. However, in multiparame-
ter cases, both column and row reductions are necessary to obtain a diagonalization
from which the persistence information can be read. From this view-point, our algo-
rithm can be thought of as a generalization of the traditional persistence algorithm.

Example 2 Consider our working Example 1. One can see later in Sect. 5 (Case
1) that the presentation matrix of this example can be chosen to be the same as
the matrix of the boundary morphism ∂1 : C1 → C0. With fixed bases C0 =<

v
(0,1)
b , v

(1,0)
r , v

(1,1)
g > and C1 =< e(1,1)

r , e(1,2)
b , e(2,1)

g >, this presentation matrix [∂1]
and the corresponding binary matrix A can be written as follows (recall that super-
scripts indicate the grades) :

⎛

⎜
⎝

[∂1] e(1,1)
r e(1,2)

b e(2,1)
g

v
(0,1)
b t(1,0) t(1,1) 0

v
(1,0)
r t(0,1) 0 t(1,1)

v
(1,1)
g 0 t(0,1) t(1,0)

⎞

⎟
⎠ −→

⎛

⎜
⎝

A c(1,1)
1 c(1,2)

2 c(2,1)
3

r (0,1)
1 1 1 0

r (1,0)
2 1 0 1

r (1,1)
3 0 1 1

⎞

⎟
⎠

Four admissible operations are: r3 → r1, r3 → r2, c1 → c2, c1 → c3.

4.2 Total diagonalization algorithm

Recall that we assume distinct grading, i.e., no two columns nor two rows have same
grades. We make some comments on the output of our algorithm without this assump-
tion later in the conclusion.

Let A be the presentation matrix whose total diagonalization we are looking for.
We order the rows and columns of the matrix A according to any topological order
that extends the partial order on the grades to a total order, e.g., dictionary order.
We fix the indices Row(A) = {1, 2, . . . , �} and Col(A) = {1, 2, . . . ,m} according
to this order. With this ordering, observe that, for each admissible column operation
ci → c j , we have i < j , and for each admissible row operation rl → rk , we have
l > k.

For any column ct , let A≤t := A|C denote the left submatrix on C =[
Row(A), { j ∈ Col(A) | j ≤ t}] and A<t denote its stricter version obtained by
excluding column ct from A≤t . Our algorithm starts with the finest decomposition
and coarsens it as necessary. The main steps of our algorithm runs as follows (see
Fig. 5 for an illustration):

0. Initialization: Initialize the collection of index blocks B(0) := {B(0)
i := [{i}, ∅] |

i ∈ Row(A)}, for the total diagonalization of null column matrix A≤0.
1. Main iteration: Process A from left to right incrementally by introducing a col-

umn ct and considering left submatrices A≤t for t = 1, 2, . . . ,m. We update and
maintain the collection of index blocks B(t) ← {B(t)

i } for the current submatrix

123

288 T. K. Dey, C. Xin

Fig. 5 (left) A at the beginning of iteration t with A<t being totally diagonalized with three index blocks

B(t−1) = {B(t−1)
1 , B(t−1)

2 , B(t−1)
3 }. (right) A sub-column update step: ct |RowB(t−1)

1
has already been

reduced to zero. So, B(t)
1 = B(t−1)

1 is added into B(t). White regions including ct |RowB(t−1)
1

must be

preserved afterward. Now for i = 2, we attempt to reduce purple sub-column ct |RowB(t−1)
2

. We extend it

to block on T := [
Row(B(t−1)

2), (Col(A≤t) \ Col(B(t−1)
2))

]
and try to reduce it in BLOCKREDUCE

A≤t in each iteration by using column and block updates stated below. Here we
use upper index (·)(t) to emphasize the iteration t .

2. Sub-column update: Partition the column ct into sub-columns ct |RowB(t−1)
i

:=
A[Row(B(t−1)

i), {t}], one for the set of rows Row(B(t−1)
i) for each block from the

previous iteration. We process each such sub-column ct |RowB(t−1)
i

one by one,

checking whether there exists a sequence of admissible operations that are able
to reduce the sub-column to zero while preserving the prior, according to the
definition below.

Definition 12 A prior with respect to a sub-column ct |RowB(t−1)
i

is defined to be the

left submatrix A<t and sub-columns ct |RowB(t−1)
j

for all j < i .

That is to say, the operations that preserve prior, together change neither A<t nor
other sub-columns ct |RowB(t−1)

j
for all j < i . If such operations exist, we apply

them on the current A to get an equivalent matrix with the sub-column ct |RowB(t−1)
i

being zeroed out and we set B(t)
i ← B(t−1)

i . Otherwise, we leave the matrix A

unchanged and add the column index t to those of B(t−1)
i , i.e., we set B(t)

i ←
[
Row(B(t−1)

i),Col(B(t−1)
i)∪{t}]. After processing every sub-column ct |RowB(t−1)

i
one

by one, all index blocks B(t)
i containing column index t are merged into one single

index block. At the end of iteration t , we get an equivalent matrix A with A≤t being
totally diagonalized with index blocks B(t).

3. Block reduce: To update the entries of each sub-column of ct described in 2,
we propose a block reduction algorithm BLOCKREDUCE to compute the correct
entries. Given T := [

Row(B(t−1)
i), Col(A≤t) \ Col(B(t−1)

i)
]
, this routine checks

123

Generalized persistence algorithm for decomposing. . . 289

whether the block T can be zeroed out by some collection of admissible opera-
tions. If so, ct does not join the block B(t)

i and A is updated with these operations.

For two index blocks B1, B2, we denote the merging B1 ⊕ B2 of these two index
blocks as an index block

[
Row(B1)∪Row(B2), Col(B1)∪Col(B2)

]
. In the following

algorithm, we treat the given matrixA to be a global variable which can be visited and
modified anywhere by every subroutines called. That means, every time we update
values in A by some operations, these operations are applied to the latest A.

Algorithm 1: TOTDIAGONALIZE(A)
Input: A = input matrix treated as a global variable whose columns and rows

are totally ordered respecting some fixed partial order given by the
grading.

Result: a total diagonalization A∗ with index blocks B∗
1 B(0) ← {B(0)

i := [{i},∅] | i ∈ Row(A)};
2 for t ← 1 to m := |Col(A)| do
3 B(t)

0 ← [∅, {t}];
4 for each B(t−1)

i ∈ B(t−1) do
5 T := [

Row(B(t−1)
i), Col(A≤t) \ Col(B(t−1)

i)
]
;

6 if BLOCKREDUCE (T)== false then
7 B(t)

i ← B(t−1)
i ⊕ B(t)

0 ; // update Bi by appending t
8 end
9 else

10 B(t)
i ← B(t−1)

i ; // Bi remains unchanged
11 end
12 end

13 B(t) ← {B(t)
i } with all B(t)

i containing t merged as one block.
// A and ct are updated in BLOCKREDUCE whenever it

returns true
14 end
15 return (A,B(m));

Remark 6 Our algorithm does not require the input presentation matrix to be minimal.
As indicated in Remark 4, the trivial parts produce either identity blocks or single
column blocks like

[∅, { j}]. A single column block corresponds to a zero morphism
and is not merged with any other blocks. Therefore, c j is a zero column. For a single
row block

[{i}, ∅]
which is not merged with any other blocks, ri is a zero row vector.

It represents a free indecomposable submodule in the total decomposition of the input
persistence module.

We first prove the correctness of TOTDIAGONALIZE assuming that BLOCKRE-
DUCE routine works as claimed, namely, it checks if a sub-column of the current
column ct can be zeroed out while preserving the prior, that is, without changing the
left submatrix from the previous iteration and also the other sub-columns of ct that
have already been zeroed out.

123

290 T. K. Dey, C. Xin

Proposition 3 At the end of each iteration t, A≤t is a total diagonalization.

Proof We prove it by induction on t . For the base case t = 0, it follows trivially by
definition.

Now assume A(t−1) is the matrix produced by our algorithm at the end of iteration
(t−1)withA(t−1)

≤t−1 totally diagonalized. That means,A(t−1)
≤t−1 = A∗≤t−1 whereA = A(0)

is the original given matrix. To prove it by contradiction, assume at the end of iteration
t , the matrix we get, A(t), has left submatrix A(t)

≤t which is not totally diagonalized.
That means, some index block B ∈ B(t) can be decomposed further. Observe that
such B must contain t because all other index blocks (not containing t) in B(t) are
also in B(t−1) which cannot be decomposed further by our inductive assumption. We
denote this index block containing t as Bt . Let A′ be the equivalent matrix of A(t)

such that A′≤t is a total diagonalization with index blocks B′. Let F be an equivalent
transformation from A(t) to A′, which decomposes Bt into at least two distinct index
blocks of B′, say B0, B1, · · · . Only one of them contains t , say B0. Then B1 consists
of only indices that are from A≤t−1,

which means B1 equals some index block Bi ∈ B(t−1). Therefore, the transforma-
tion F gives a sequence of admissible operations which can reduce the sub-column
ct |Row(Bi) to zero in A(t). Note that we just use F to decompose the block of Bt .
Therefore, we can choose a sequence of admissible operations which only involves
indices of Bt . This gives us a sequence of admissible operations that does not change
other sub-columns ct |Row(Bj) for Bj �= Bt .

Starting with this sequence of admissible operations, we will construct another
sequence of admissible operations which further keeps A(t)

≤t−1 unchanged to reach
the contradiction.

Observe that A(t)
≤t−1 = A(t−1)

≤t−1 and all index blocks of B′ other than B0 are

also index blocks in B(t−1), i.e. B′ \ {B0} ⊆ B(t−1). B0 can be written as B0 =⊕
Bj∈B(t−1)\B′ Bj ⊕ [∅, {t}]. Let Ba be the merge of index blocks that are in A(t−1)

and also in A′ and Bb be the merge of the rest of the index blocks of A(t−1), i.e.,
Ba = ⊕

Bj∈B′∩B(t−1) Bj and Bb = ⊕
Bj∈B(t−1)\B′ Bj . Then {Ba, Bb} can be viewed

as a coarser decomposition on A(t−1)
≤t−1 and also on A′≤t−1. By taking restrictions,

we have A′|Ba ∼ A(t−1)|Ba with equivalent transformation Fa and A′|Bb ∼
A(t−1)|Bb with equivalent transformation Fb. Then Fa gives a sequence of admis-
sible operations with indices in Ba and Fb gives a sequence of admissible operations
with indices in Bb. By applying these operations on A′, we can transform A′≤t−1 to

A(t−1)
≤t−1 with sub-column [Row(A) \ Row(B0), {t}] unchanged, which consists of the

sub-columns that have already been reduced to zero. Combining all admissible oper-
ations from these three transformations F, Fa and Fb together, we get a sequence of
admissible operations that reduce sub-column [Row(Bi), {t}] to zero without chang-
ing A(t)

<t and also those sub-columns which have already been reduced. But, then
BLOCKREDUCE would have returned ‘true’ signaling that Bi should not be merged
with any other block required to form the block Bt reaching a contradiction. ��

Now we design the BLOCKREDUCE subroutine as required. With the requirement
of prior preservation, observe that reducing the sub-column ct |RowB for some B ∈

123

Generalized persistence algorithm for decomposing. . . 291

B(t−1) is the same as reducing T = [Row(B), (Col(A≤t) \ Col(B))] called the target
block (see Fig. 5 on the right) . The main idea of BLOCKREDUCE is to consider a
specific subset of admissible operations called independent operations. Within A≤t ,
these operations only change entries in T and this change is independent of their
order of application. Our BLOCKREDUCE is designed to search for a sequence of
admissible operations within this subset and reduce T with it, if it exists. Clearly,
the prior is preserved with these operations. The only thing we need to ensure is
that searching within the set of independent operations is sufficient. That means, if
there exists a sequence of admissible operations that can reduce T to 0 and meanwhile
preserves the prior, then we can always find one such sequence with only independent
operations. This is what we show next.

Consider the following matrices for each admissible operation. For each admissi-
ble column operation ci → c j , let

Yi, j := A·[δi, j]

where [δi, j] is them×m square matrix with only one non-zero entry at (i, j). Observe
that A·[δi, j] is a matrix with the only nonzero column at j with entries copied from
ci in A. Similarly, for each admissible row operation rl → rk , let [δk,l] be the � × �

matrix with only non-zero entry at (k, l). let

Xk,l := [δk,l]·A

Application of a column operation ci → c j can be viewed as updating A to A·(I+
[δi, j]) = A+Yi, j . Similar observation holds for row operations as well. For a target
block T = [Row(B),Col(A≤t) \ Col(B)] defined on some B ∈ B(t−1), we say an
admissible column (row) operation, ci → c j (rl → rk resp.) is independent on T if
i /∈ Col(T), j ∈ col(T) (l /∈ Row(T), k ∈ Row(T) resp.). Briefly, we just call such
operations independent operations if T is clear from the context.

We have two observations about independent operations that are important. The
first one follows from the definition that T = [Row(B), Col(A≤t) \ Col(B)].
Observation 2 Within A≤t , an independent column or row operation only changes
entries on T .

Observation 3 For any independent column operation ci → c j and row operation
rl → rk , we have [δk,l]·A·[δi, j] = 0. Or, equivalently

(I�×� + [δk,l])·A·(Im×m + [δi, j]) = A + [δk,l]A + A[δi, j] = A + Xk,l + Yi, j (2)

Proof [δk,l]·A·[δi, j] = Al,i [δk, j](see Fig 6 for an illustration). By definitions of inde-
pendence and T , we have l /∈ Row(B), i ∈ Col(B). That means they are row index
and column index from different blocks. Therefore, Al,i = 0. ��

The following proposition reveals why we are after the independent operations.

123

292 T. K. Dey, C. Xin

Fig. 6 [δk,l]A[δi, j] is a matrix
with the only nonzero entry at
(k, j) being a copy of Al,i

Proposition 4 The target block A|T can be reduced to 0 while preserving the prior
if and only if A|T can be written as a linear combination of independent operations.
That is,

A|T =
∑

l /∈Row(T)
k∈Row(T)

αk,lXk,l |T +
∑

i /∈Col(T)
j∈Col(T)

βi, jYi, j |T (3)

where αk,l ’s and βi, j ’s are coefficient in k = F2.

Proof The full proof is in Appendix B, here we give some intuitive explanation.
Reducing the target blockA|T to 0 is equivalent to finding matrices P andQ encoding
sequences of admissible row operations and admissible column operations respec-
tively so that PAQ|T = 0. For ⇐ direction, we can build P = I + ∑

αk,l [δk,l] and
Q = I + ∑

βi, j [δi, j] with binary coefficients αk,l ’s and βi, j ’s given in Equation 3.
Then using Observations 2 and 3, we show PAQ indeed reduces A|T to 0 with the
prior being preserved.

For⇒ direction, as long as we show that the existence of a transformation reducing
A|T to 0 implies the existence of a transformation reducing A|T to 0 by independent
operations, we are done. This is formally captured as Proposition 7 and proved in
Appendix B. ��

We can view A|T ,Yi, j |T ,Xk,l |T as binary vectors in the same |T |-dimensional
space. Proposition 4 tells us that it is sufficient to check if A|T can be a linear com-
bination of the vectors corresponding to a set of independent operations. So, we
first linearize each of the matrices Yi, j |T ’s, Xk,l |T ’s, and A|T to a column vector
as described later (see Fig. 7). Then, we check if A|T is in the span of Yi, j |T ’s and
Xk,l |T ’s. This is done by collecting all vectors Xi, j |T ’s and Yk,l |T ’s into a matrix S
called the source matrix (Fig. 7 (right)) and then reducing the vector c := A|T with
S by some standard matrix reduction algorithm with left-to-right column additions,
which is the subroutine called COLREDUCE in BLOCKREDUCE described below. If
c = A|T can be reduced to 0, we apply the corresponding independent operations
to update A. Observe that all column operations used in reducing A|T together only
change the sub-column ct |RowB while row operations may change A to the right of
the column t .

Here we provide a short description and the pseudo-code of the subroutine COL-
RDEUCE.

123

Generalized persistence algorithm for decomposing. . . 293

Fig. 7 t = 6 is the current column. For the current block, the red one, our target block T is the purple one.
We build Xk,l |T ’s for admissible row operations from blue or green into purple. For example, r5 → r1
illustrated on the left. Also, build Yi, j |T ’s for admissible column operations from the red block to the
purple block. For example, c1 → c5 on top-left. The middle picture shows X1,5|T and Y1,5|T for these
two operations. After linearizing, the corresponding vectors are added into the source matrix, which is
finally used to reduce the target A|T

For a column c j , we use Low(c j) to indicate the lowest row number such that c j
has 1 in that row. Let Low(c j) = −1 if c j is a zero column. We call a matrix S′ ∼ S
lowest-conflict-free for S if for each row index i = Low(c j) �= −1 there is no j ′ �= j
so that Low(c j ′) = i . Notice that S′ is not necessarily unique. However, all the claims
do not depend on the choice of S′. The algorithm COLREDUCE(S, c) transforms the
matrix [S|c] to a lowest-conflict-free matrix and as a result reduces the column c.
We say this procedure reduces c with S. Note that this algorithm is the traditional
persistence algorithm.

Algorithm 2: COLREDUCE(S , c)
Input: S=source matrix, c=target column to reduce.
Result: return the reduced target column

1 S′ ← [S|c];
2 for i ← 1 to |Col(S)| do // Transform [S|c] to be
lowest-conflict-free

3 � ← Low(ci);
4 if � �= −1 then
5 for j ← 1 to i − 1 do
6 if Low(c j) == � then
7 ci ← c j + ci ;
8 go to 3
9 end

10 end
11 end
12 end
13 return c

The following fact is well known and is the basis of the classical matrix based
persistence algorithm.

123

294 T. K. Dey, C. Xin

Fact 4 There exists a set of column operations adding a column only to its right such
that the matrix [S|c] is reduced to [S′|0] if and only if COLREDUCE(S, c) returns a
zero vector.

Now we describe the linearization used in routine BLOCKREDUCE as presented in
Algorithm 3:BLOCKREDUCE. We fix a linear order ≤Lin on the set of matrix indices,
Row(A) × Col(A), as follows: (i, j) ≤Lin (i ′, j ′) if j > j ′ or j = j ′, i < i ′.
Explicitly, we linearly order the indices as:

((1,m), (2,m), . . . , (�, n), (1,m − 1), (2,m − 1), . . .).

For any index block B, let Lin(A|B) be the vector of dimension |Col(B)| · |Row(B)|
obtained by linearizing A|B to a vector in the above linear order on the indices.

Algorithm 3: BLOCKREDUCE(T)

Data: A=global variable of the given matrix.
Input: T=index of target block to be reduced; t=index of current column
Result: Return a boolean to indicate whether A|T can be reduced. Reduce block

A|T if possible.
1 Compute c := Lin(A|T) and initialize empty matrix S;
2 for each admissible column operation ci → c j with i /∈ Col(T), j ∈ Col(T), do
3 compute Yi, j |T := (A·[δi, j])|T and yi, j = Lin(Yi, j |T); update

S ← [S|yi, j];
4 end
5 for each admissible row operation rl → rk with l /∈ Row(T), k ∈ Row(T) do
6 compute Xk,l |T := ([δk,l]·A)|T and xk,l := Lin(Xk,l |T); update

S ← [S|xk,l];
7 end
8 COLREDUCE (S, c) returns indices of yi, j ’s and xk,l ’s used to reduce c if
possible;

9 For every such index of yi, j or xk,l apply ci → c j or rl → rk to transform A;
10 return A|T == 0;

Proposition 5 The target block on T can be reduced to zero in A while preserving the
prior if and only if BLOCKREDUCE(T) returns true.

Time complexity. First we analyze the time complexity of TOTDIAGONALIZE

assuming that the input matrix has size � × m. Clearly, max{�,m} = O(N) where
N is the total number of generators and relations. For each of O(N) columns, we
attempt to zero out every sub-column with row indices coinciding with each block B
of the previously determined O(N) blocks. Let B has NB rows. Then, the block T in
step 5 has NB rows and O(N) columns.

To zero-out a sub-column, we create a source matrix out of T which has size
O(NNB) × O(N 2) because each of O(

(N
2

)
) possible operations is converted to a

column of size O(NNB) in the source matrix. The source matrix S with the tar-
get vector c can be reduced with an efficient algorithm (Bunch and Hopcroft 1974;

123

Generalized persistence algorithm for decomposing. . . 295

Fig. 8 Diagonalizing the binary matrix given in Example 2: It is equivalent to multiplying the original
matrix ∂ with a left matrix U that represents the row operation and a right matrix V that represents the
column operations

Ibarra et al. 1982) in O(a + N 2(NNB)ω−1) time where a is the total number of
nonzero elements in [S|c] and ω ∈ [2, 2.373) is the exponent for matrix multiplica-
tion. We have a = O(NNB · N 2) = O(N 3NB). Therefore, for each block B we
spend O(N 3NB + N 2(NNB)ω−1) time in step 6. Then, observing

∑
B∈B NB = N ,

for each column we spend a total time of

∑

B∈B
O(N 3NB + N 2(NNB)ω−1)

= O(N 4 + Nω+1
∑

B∈B
Nω−1
B) = O(N 4 + N 2ω) = O(N 2ω) (4)

Therefore, counting for all of the O(N) columns, the total time for decomposition
takes O(N 2ω+1) time.

4.3 Running TOTDIAGONALIZE on the working Example 1

Example 3 Consider the binary matrix after simplication as illustrated in Example 2.

⎛

⎜
⎝

A c(1,1)
1 c(1,2)

2 c(2,1)
3

r (0,1)
1 1 1 0

r (1,0)
2 1 0 1

r (1,1)
3 0 1 1

⎞

⎟
⎠

It has 4 admissible operations: r3 → r1, r3 → r2, c1 → c2, c1 → c3 (Fig. 8).
Before the first iteration, B is initialized to be B = {B1 = ({1},∅), B2 =

({2},∅), B3 = ({3},∅)}. In the first iteration when t = 1, we have block B0 =
(∅, {1}) for column c1. For B1 = ({1},∅), the target block we hope to zero out is
T = ({1}, {1}). So we call BLOCKREDUCE(T) to check if A|T can be zeroed out
and update the entries on T according to the results of BLOCKREDUCE(T). There is
only one admissible operation from outside of T into it, namely, r3 → r1. The target
vector c = Lin(A|T) and the source matrix S = {Lin(([δ1,3]A)|T)} are:

123

296 T. K. Dey, C. Xin

[S Lin(([δ1,3]A)|T) c=Lin(A|T)

0 1
]

The result of COLREDUCE(S, c) stays the same as its input. That means we can-
not reduce c at all. Therefore, BLOCKREDUCE(T , t) returns FALSE and nothing is
updated in the original matrix.

It is not surprising that the matrix remains the same because the only admissible
operation that can affect T does not change any entries in T at all. So there is nothing
one can do to reduce it, which results in merging B1 ⊕ B0 = ({1}, {1}). Similarly,
for B2 with T = ({2}, {1}), the only admissible operation r3 → r2 does not change
anything in T . Therefore, the matrix does not change and B2 is merged with B1 ⊕
B0, which results in the block ({1, 2}, {1}). For B3 with T = ({3}, {1}), there is no
admissible operation. So the matrix does not change. But A|T = A|({3},{1}) = 0. That
means BLOCKREDUCE returns TRUE. Therefore, we do not merge B3. In summary,
B0, B1, B2 are merged to be one block ({1, 2}, {1}) in the first iteration. So after the
first iteration, there are two index blocks in B(1): ({1, 2}, {1}) and ({3},∅).

In the second iteration t = 2, we process the second column c2. Now B1 =
({1, 2}, {1}), B2 = ({3},∅) and B0 = (∅, {2}). For the block B1 = ({1, 2}, {1}),
the target block we hope to zero out is T = ({1, 2}, {2}). There are three admis-
sible operations from outside of T into T , r3 → r1, r3 → r2, c1 → c2.
BLOCKREDUCE(T) constructs the target vector c = Lin(A|T) and the source matrix
S = {Lin(([δ1,3]A)|T), Lin(([δ2,3]A)|T), Lin((A[δ1,2])|T)} illustrated as follows:

[S Lin(([δ1,3]A)|T) Lin([(δ2,3]A)|T) Lin((A[δ1,2])|T) c=Lin(A|T)

1 0 1 1
0 1 1 0

]

The result of COLREDUCE(S, c) is

[S c

1 0 0 0
0 1 0 0

]

So the BLOCKREDUCE updates A|T to get the following updated matrix:

⎛

⎜
⎝

A′ c(1,1)
1 c(1,2)

2 c(2,1)
3

r (0,1)
1 + r (1,1)

3 1 0 1

r (1,0)
2 1 0 1

r (1,1)
3 0 1 1

⎞

⎟
⎠

and return TRUE since A′|T == 0. Therefore, we do not merge B1. We continue to
check for the block B2 = ({3},∅) and T = ({3}, {1, 2}), whetherA′|T can be reduced
to zero. There is no admissible operation for this block at all. Therefore, the matrix
stays the same and BLOCKREDUCE returns FALSE. We merge B2 ⊕ B0 = ({3}, {2}).

123

Generalized persistence algorithm for decomposing. . . 297

Continuing the process for the last column c3 in the third iteration t = 3,
we see that B1 = ({1, 2}, {1}), B2 = ({3}, {2}) and B0 = (∅, {3}). For
the block B1 = ({1, 2}, {1}), the target block we hope to zero out is T =
({1, 2}, {2, 3}). There are four admissible operations from outside of T into T ,
r3 → r1, r3 → r2, c1 → c2, c1 → c3. BLOCKREDUCE(T) constructs the target vec-
tor c = Lin(A|T) and the source matrix S = {Lin(([δ1,3]A)|T), Lin(([δ2,3]A)|T), Lin
((A[δ1,2])|T)}, Lin((A[δ1,3])|T)} illustrated as follows:

⎡

⎢
⎢
⎣

S Lin(([δ1,3]A)|T) Lin([(δ2,3]A)|T) Lin((A[δ1,2])|T) Lin((A[δ1,3])|T) c=Lin(A|T)

1 0 0 1 1
0 1 0 1 1
1 0 1 0 0
0 1 1 0 0

⎤

⎥
⎥
⎦

The result of COLREDUCE(S, c) is

⎡

⎢
⎢
⎣

S c

1 0 1 0 0
0 1 1 0 0
1 0 0 0 0
0 1 0 0 0

⎤

⎥
⎥
⎦

So the BLOCKREDUCE updates A|T to get the following updated matrix:

⎛

⎜
⎝

A′ c(1,1)
1 c(1,2)

2 + c(1,1)
1 c(2,1)

3

r (0,1)
1 1 0 0

r (1,0)
2 + r (1,1)

3 1 0 0

r (1,1)
3 0 1 1

⎞

⎟
⎠

and returns TRUE since A′|T == 0. Therefore, we do not merge B1 with any other
block. We continue to check for the block B2 = ({3}, {2}) and T = ({3}, {1, 3}),
whether A′|T can be reduced to zero. There is no admissible operation for this block
at all. Therefore, the matrix stays the same and BLOCKREDUCE returns FALSE. We
merge B2 ⊕ B0 = ({3}, {2, 3}).

Finally the algorithm returns the matrix A′ shown above as the final result. It is
the correct total diagonalization with two index blocks in BA∗

: B1 = ({1, 2}, {1})
and B2 = ({3}, {2, 3}). An examination of COLREDUCE(S, c) in all three iterations
over columns reveals that the entire matrix A is updated by operations r3 → r2 and
c1 → c2.

We can further transform it back to the original form of the presentation matrix
[∂1]. Observe that a row addition ri ← ri +r j reverts to a basis change in the opposite
direction.

123

298 T. K. Dey, C. Xin

⎛

⎜
⎝

[∂1] e(1,1)
r e(1,2)

b e(2,1)
g

v
(0,1)
b t(1,0) t(1,1) 0

v
(1,0)
r t(0,1) 0 t(1,1)

v
(1,1)
g 0 t(0,1) t(1,0)

⎞

⎟
⎠

⇒

⎛

⎜
⎝

[∂1]∗ e(1,1)
r e(1,2)

b + t(0,1)e(1,1)
r e(2,1)

g

v
(0,1)
b t(1,0) 0 0

v
(1,0)
r t(0,1) 0 0

v
(1,1)
g + t(0,1)v(1,0)

r 0 t(0,1) t(1,0)

⎞

⎟
⎠

5 Computing presentations

Now that we know how to decompose a presentation by diagonalizing its matrix
form, we describe how to construct and compute these matrices in this section. In
practice, as described in Example 1, a persistence module is given implicitly with a
simplicial filtration from which a graded module of simplicial chain complex can be
inferred as we discussed before. We always assume that the simplicial filtration is 1-
critical, which means that each simplex has a unique earliest birth time. For the case
which is not 1-critical, called multi-critical, one may utilize the mapping telescope,
a standard algebraic construction (Hatcher 2000), which transforms a multi-critical
filtration to a 1-critical one. However, notice that this transformation increases the
input size depending on the multiplicity of the incomparable birth times of the sim-
plices. For 1-critical filtrations, each module Cp is free. With a fixed basis for each
free module Cp, a concrete matrix [∂p] for each boundary morphism ∂p based on the
chosen bases can be constructed.

With this input, we discuss our strategies for different cases that depend on two
parameters, d, the number of parameters of filtration function, and p, the dimension
of the homology groups in the persistence modules.

We already stated that a simplicial filtration induces a persistence module. Here,
we first give the details of this construction. Recall that a (d-parameter) simplicial
filtration is a family of simplicial complexes {Xu}u∈Zd such that for each grade u ∈
Zd and each i = 1, . . . , d, Xu ⊆ Xu+ei . A d-parameter persistence module is a
graded R-module where the vector spaces Mu are homology groups and linear maps
among them are induced by a d-parameter simplical filtration.

We obtain a simplicial chain complex (C·(Xu), ∂·) for each Xu in this simplicial
filtration. For each comparable pairs in the grading u ≤ v ∈ Zd , a family of inclusion
maps C·(Xu) ↪→ C·(Xv) is induced by the canonical inclusion Xu ↪→ Xv giving
rise to the following diagram:

123

Generalized persistence algorithm for decomposing. . . 299

C·(Xu) : · · · Cp+1(Xu) Cp(Xu) Cp−1(Xu) · · ·

C·(Xv) : · · · Cp+1(Xv) Cp(Xv) Cp−1(Xv) · · ·

∂p+2 ∂p+1 ∂p ∂p−1

∂p+2 ∂p+1 ∂p ∂p−1

For each chain complex C·(Xu), we have the cycle spaces Z p(Xu)’s and bound-
ary spaces Bp(Xu)’s as kernels and images of boundary maps ∂p’s respectively, and
the homology group Hp(Xu) = Z p(Xu)/Bp(Xu) as the cokernel of the inclusion
maps Bp(Xu) ↪→ Z p(Xu). In line with category theory we use the notations im , ker,
coker for indicating both the modules of kernel, image, cokernel and the correspond-
ing morphisms uniquely determined by their constructions3. We obtain the following
commutative diagram:

Bp(Xu) Z p(Xu) Hp(Xu)

· · ·Cp+1(Xu) Cp(Xu) · · ·
ker ∂p

coker

∂p+1

im ∂p+1

In the language of graded modules, for each p, the family of vector spaces and
linear maps (inclusions) ({Cp(Xu)}u∈Zd , {Cp(Xu) ↪→ Cp(Xv)}u≤v) can be summa-
rized as a Zd -graded R-module:

Cp(X) :=
⊕

u∈Zd

Cp(Xu), with the ring action ti

·Cp(Xu) : Cp(Xu) ↪→ Cp(Xu+ei) ∀i, ∀u.

That is, the ring R acts as the linear maps (inclusions) between pairs of vector spaces
in Cp(X·) with comparable grades. It is not too hard to check that this Cp(X·) is
indeed a graded module. Each p-chain in a chain space Cp(Xu) is a homogeneous
element with grade u. Then we have a chain complex of graded modules (C∗(X), ∂∗)
where ∂∗ : C∗(X) → C∗−1(X) is the boundary morphism given by ∂∗ �

⊕
u∈Zd ∂∗,u

with ∂∗,u : C∗(Xu) → C∗−1(Xu) being the boundary map on C∗(Xu).
The kernel and image of a graded module morphism are also graded modules as

submodules of domain and codomain respectively whereas the cokernel is a quotient
module of the codomain. They can also be defined grade-wise in the expected way:

For f : M → N , (ker f)u = ker fu, (im f)u = im fu, (coker f)u = coker fu.

All the linear maps are naturally induced from the original linear maps in M and
N . In our chain complex cases, the kernel and image of the boundary morphism
∂p : Cp(X) → Cp−1(X) is the family of cycle spaces Z p(X) and family of bound-
ary spaces Bp−1(X) respectively with linear maps induced by inclusions. Also, from
the inclusion induced morphism Bp(X) ↪→ Z p(X), we have the cokernel module
Hp(X), consisting of homology groups

⊕
u∈Zd Hp(Xu) and linear maps induced

3 e.g. ker ∂p denotes the inclusion of Z p into Cp

123

300 T. K. Dey, C. Xin

from inclusion maps Xu ↪→ Xv for each comparable pairs u ≤ v. This Hp(X) is
an example of persistence module M we mentioned in the beginning of this sec-
tion, which we will study. It is called a persistence module M because not only does
it encode the information of homology groups by each graded component Mu, but,
roughly speaking, also tracks birth, death, merging and persistence of the homological
cycles through all admissible linear maps Mu → Mv,∀u ≤ v. Classical persistence
modules arising from a filtration of a simplicial complex over Z is an example of a
1-parameter persistence module where the action t1 ·Mu ⊆ Mu+e1 signifies the linear
map Mu → Mv between homology groups induced by the inclusion of the complex
at u into the complex at v = u + e1.

In our case, we have chain complex of graded modules and induced homology
groups which can be succinctly described by the following diagram:

Bp(X) Z p(X) Hp(X) Bp−1(X) Z p−1(X) Hp−1(X)

· · ·Cp+1(X) Cp(X) Cp−1(X) · · ·
ker(∂p) ker ∂p−1

∂p+1

im ∂p+1

∂p

im ∂p

Now we show how to compute presentations of persistence modules.
Note that a presentation gives an exact sequence F1 → F0 � H → 0. To reveal

further details of a presentation of H , we recognize that it respects the following
commutative diagram,

Y 1

F1 F0 H

ker f 0

f 1
im f 1

f 0=coker f 1

where Y 1 ↪→ F0 is the kernel of f 0. With this diagram being commutative, all
maps in this diagram are essentially determined by the presentation map f 1. We call
the surjective map f 0 : F0 → H generating map, and Y 1 = ker f 0 the 1st syzygy
module of H .

We introduce the following useful properties of graded modules which are used in
the justifications later. They are similar to Proposition (1.3) in Chapter 6 of Cox et al.
(2006).

Fact 5 Let M be a persistence module.

1. Choosing a homogeneous element in M with grade u is equivalent to choosing a
morphism R→u → M.

2. Choosing a set of homogeneous elements in M with grades u1, . . . ,un is equiva-
lent to choosing a morphism

⊕n
i=1 R→ui → M.

3. Choosing a generating set of M consisting of n homogeneous elements with
grades u1, . . . ,un is equivalent to choosing a surjective morphism

⊕n
i=1 R→ui �

M.
4. If M 	 ⊕

i R→ui is a free module, choosing a basis of M is equivalent to choos-
ing an isomorphism

⊕
R→ui → M.

123

Generalized persistence algorithm for decomposing. . . 301

5.1 Multiparameter filtration, zero-dimensional homology

In this case p = 0 and d > 0. This special case corresponds to determining
clusters in the multiparameter setting. Importance of clusters obtained by classical
one-parameter persistence has already been recognized in the literature (Carlsson and
Mémoli 2008; Liu et al. 2017). Our algorithm computes such clusters in a multipa-
rameter setting. In this case, we obtain a presentation matrix straightforwardly with
the observation that the module Z0 of cycle spaces coincides with the module C0 of
chain spaces.

– Presentation: C1 C0 H0
∂1 coker∂1

– Presentation matrix = [∂1] is given as part of the input.

Justification. For p = 0, the cycle module Z0 = C0 is a free module. So we have the
presentation of H as follows:

B0

C1 C0 H0∂1

im ∂1

coker∂1

It is easy to check that ∂1 : C1 → C0 is a presentation of H0 since both C1 and C0
are free modules. With standard basis of chain modules Cp’s, we have a presentation
matrix [∂1] as the valid input to our decomposition algorithm.

The 0th homology in our working Example 1 corresponds to this case. The pre-
sentation matrix is the same as the matrix of boundary morphism ∂1.

For convenience, we introduce a compact description of a presentation f 1 :
F1 → F0 of a module H . We write H =< g1, . . . , gn : s1, . . . , sm > where
{gi } is a chosen basis of F0 and {s j } is a chosen generating set of im f 1 ⊆ F0

of F0. In the working Example 1, we can write H0 =< v
(0,1)
b , v

(1,0)
r , v

(1,1)
g :

∂1(e
(1,1)
r), ∂1(e

(1,2)
b), ∂1(e

(2,1)
g) >.

5.2 2-parameter filtration, multi-dimensional homology

In this case, d = 2 and p ≥ 0. Lesnick and Wright (2019) have presented an algo-
rithm to compute a presentation, in fact a minimal presentation, for this case. We
restate some of their observations for completeness here. When d = 2, by Hilbert
Syzygy Theorem (Hilbert 1890), the kernel of a morphism between two free graded
modules is always free. This implies that the canonical surjective map Z p � Hp

from free module Z p can be naturally chosen as a generating map in the presentation
of Hp. In this case we have:

– Presentation: Cp+1 Z p Hp
∂̄p+1 coker∂̄p+1

where ∂̄p+1 is the induced map

from the diagram:

123

302 T. K. Dey, C. Xin

Bp Z p Hp

Cp+1 Cp

ker ∂p

∂p+1

im ∂p+1
∂̄p+1

– Presentation matrix = [∂̄p+1] is constructed as follows:

1. Compute a basis G(Z p) for the free module Z p where G(Z p) is presented as
a set of generators in the basis of Cp. This can be done by an algorithm in
Lesnick and Wright (2019). Take G(Z p) as the row basis of the presentation
matrix [∂̄p+1].

2. Present im ∂p+1 in the basis of G(Z p) to get the presentation matrix [∂̄p+1] of
the induced map as follows. Originally, im ∂p+1 is presented in the basis ofCp

through the given matrix [∂p+1]. One needs to rewrite each column of [∂p+1]
in the basisG(Z p) computed in the previous step. This can be done as follows.
Let [G(Z p)] denote the matrix presenting basis elements inG(Z p) in the basis
of Cp. Let c be any column vector in [∂p+1]. We reduce c to zero vector by
the matrix [G(Z p)] and note the columns that are added to c. These columns
provide the necessary presentation of c in the basis G(Z p). This reduction can
be done through the traditional persistent algorithm (Edelsbrunner and Harer
2010).

Justification. Unlike p = 0 case, for p > 0, we just know Z p is a (proper) submodule
of Cp, which means that Z p is not necessarily equal to the free module Cp. However,
fortunately for d = 2, the module Z p is free, and we have an efficient algorithm to
compute a basis of Z p as the kernel of the boundary map ∂p : Cp → Cp−1. Then,
we can construct the following presentation of Hp:

Bp

Cp+1 Z p Hp 0∂̄p+1

im ∂p+1

coker∂̄p+1

Here the ∂̄p+1 is an induced map from ∂p+1. With a fixed basis on Z p and stan-
dard basis of Cp+1, we rewrite the presentation matrix [∂p+1] to get [∂̄p+1], which
constitutes a valid input to our decomposition algorithm.

Example 4 Consider the simplicial complex described in Fig. 9. This is a hollow torus
consisting of three empty triangles on three corners and each pair of triangles is con-
nected by a hollow tunnel. This example is quite similar to the working example if we
view the red, blue, green triangles as three generators in the H1 persistence homology
and three tunnels as relations connecting them. Then, we get an almost same presen-
tation except that at grade (2, 2), the triangular torus introduces a new cycle which is
different from any previous generators. For fixed bases of Z1 and B1, we can build
the presentation matrix of ∂̄2. After doing some basic reduction, it can be shown that
this presentation matrix is equivalent to:

123

Generalized persistence algorithm for decomposing. . . 303

Fig. 9 An example of 2-parameter simplicial filtrations. Each square box indicates what is the current
(filtered) simplical complex at the grade of the box. This example has one nontrivial cycle in 1st homology
groups at grades except (0, 0), (1, 1), (2, 2), and has two nontrivial cycles at grades (1, 1) and (2, 2). Note
that all tunnels connecting triangles are hollow

⎛

⎜
⎜
⎜
⎜
⎝

[∂̄2] s(1,1)
r s(1,2)

b s(2,1)
g

g(0,1)
b t(1,0) t(1,1) 0

g(1,0)
r t(0,1) 0 t(1,1)

g(1,1)
g 0 t(0,1) t(1,0)

g(2,2)∞ 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

where g(0,1)
r , g(1,0)

b , g(1,1)
r represent the three triangles at the corners and g(2,2)∞ rep-

resents the new cycle generated by the torus; images of s(1,1)
r , s(1,2)

b , s(2,1)
g under ∂̄2

represent the boundaries of three tunnels.

5.3 Multiparameter filtration, multi-dimensional homology

Nowwe consider the most general case where p > 0 and d > 0. The issue is that now
Z p is not free. So, it cannot be chosen as the 0th free module F0 in the presentation
of Hp. In what follows, we drop the index p from all modules for simplicity. We
propose the following procedure to construct the presentation of Hp. Here we use
lower indices for morphisms f0 and f1 between free modules in presentations instead
of upper indices as in f 0 and f 1 in order to write the inverse f −1

i of a map fi more
clearly.

– Presentation is constructed as follows:

123

304 T. K. Dey, C. Xin

1. Construct a minimal presentation of Z with 1st syzygy module Y 1:

Y 1

F1 F0 Z

ker f0

f1

im f1

f0

2. With the short exact sequence B Z Hπ , construct the pre-
sentation of H :

f −1
0 (B)

F1 ⊕ C F0 H

ker(π◦ f0)

ker(π◦ f0)◦(im f1+im ∂)

im f1+im ∂

π◦ f0

where π ◦ f0 is the composition of surjective morphisms

F0 Z H
f0 π ; the inclusion map f −1

0 (B) ↪→ F0 is given by the

kernel map ker(π ◦ f0); the surjective map im f1 + im ∂ : F1 ⊕C � f −1
0 (B)

is induced by the following diagram:

0 F1 F1 ⊕ C C 0

0 Y 1 f −1
0 (B) B 0

im f1 ∃im f1+im ∂ im ∂

where im ∂ : C � B is the canonical surjective map induced from boundary
map ∂ .
And finally, the presentation map F1 ⊕ C → F0 is just the composition
ker(π ◦ f0) ◦ (im f1 + im ∂).

Presentation matrix = [ker(π ◦ f0) ◦ (im f1 + im ∂)] is constructed as follows:

1. Construct a presentation matrix [∂̄] the same way as in the previous case.
2. Compute for Y 1 a minimal generating set G(Y 1) in the basis of G(Z). Let

[G(Y 1)] be the resulting matrix. Combine [∂̄] with [G(Y 1)] from right to get
a larger matrix [G(Y 1) | ∂̄].

Justification. First, we take a presentation of Z ,

Y 1

F1 F0 Z
f1 f0

Here Y 1 is the 1st syzygy module of Z . Combining it with the short exact sequence
B ↪→ Z � H , we have,

123

Generalized persistence algorithm for decomposing. . . 305

f −1
0 (B) F0

B Z H

f0
f̄0=π◦ f0

π

The map f̄0 = π ◦ f0 is a composition of surjections and thus is a surjection from
a free module F0 to H , which is a valid candidate for the 0th free module of a pre-
sentation of H . Observe that the 1st syzygy module of H , ker f̄0 = ker(π ◦ f0) =
f −1
0 (kerπ) = f −1

0 (B), and that f −1
0 (B) can be constructed as the pullback of the

maps from B, F0 to Z . The left square commutative diagram preserves the inclusion
and surjection in parallel.

Now the only thing left is to find a surjection from a free module to f −1
0 (B).

First, by the property of pullback, we know that ker f0 = ker(f −1
0 (B) → B) in a

commutative way. It implies that the following diagram commutes.

Y 1

f −1
0 (B) F0

B Z

ker g ker f0

g f0

Now focus on the left vertical line of the above commutative diagram.We have a short
exact sequence Y 1 ↪→ f −1

0 (B) � B. By the horseshoe lemma (see lemma 2.2.8 in
Weibel (1995) for details), we can build the generating set of f −1

0 (B) as illustrated in
the following diagram:

0 F1 F1 ⊕ C C 0

0 Y 1 f −1
0 (B) B 0

im f1 ∃im f1+im ∂ im ∂

The left projection F1 � Y 1 comes from the previous presentation of Z . The C � B
is the image map induced from boundary map ∂ : Cp+1 → Cp. We take the direct
sum of F1 ⊕ C and the horseshoe lemma indicates that there exists a projection
F1 ⊕ C � f −1

0 (B) making the whole diagram commute. So finally, we have the
valid presentation of F1 ⊕ C → F0 � H .

Now we identify a generating set of f −1
0 (B) that helps us constructing a matrix

for the presentation of H . From the surjection F1 ⊕ C → f −1
0 (B) in the above

commutative diagram, one can see that the combination of generators from B = im ∂

and Y 1 = im f1 forms a generating set of f −1
0 (B). The generators from B = im ∂ can

be computed as in the previous case, which results in the matrix [∂̄]. The generators
G(Y 1) from Y 1 = im f1 are obtained as a result of computing the presentation of Z ,
which can be done by an algorithm presented in Skryzalin’s thesis (Skryzalin 2016).
Combining these two together, we get the presentation matrix [∂̄,G(Y 1)] of H as
desired. So, now we have the solutions for all general cases.

123

306 T. K. Dey, C. Xin

Fig. 10 An example of a filtration of simplicial complex for d = 3 with non-free Z when p = 1. The three
red circles are three generators in Z1. However, at grading (1, 1, 1), the earliest time these three red circles
exist simultaneously, there is a relation among these three generators

The above construction of presentation matrix can be understood as follows. The
issue caused by non-free Z is that, if we use the same presentation matrix as we did
in the previous case with free Z , we may lose some relations coming from the inner
relations of a generating set of Z . We fix this problem by adding these inner relations
into the presentation matrix.

Figure 10 shows a simple example of a filtration of simplicial complex whose
persistence module H for p = 1 is a quotient module of non-free module Z .
The module H is generated by three 1-cycles presented as g(0,1,1)

1 , g(1,0,1)
2 , g(1,1,0)

3 .
But when they appear together in (1, 1, 1), there is a relation between these three:
t(1,0,0)g(0,1,1)

1 +t(0,1,0)g(1,0,1)
2 +t(0,0,1)g(1,1,0)

3 = 0. Although im ∂1 = 0, we still have

a nontrivial relation from Z . So, we have H =< g(0,1,1)
1 , g(1,0,1)

2 , g(1,1,0)
3 : s(1,1,1) =

t(1,0,0)g(0,1,1)
1 + t(0,1,0)g(1,0,1)

2 + t(0,0,1)g(1,1,0)
3 >. The presentation matrix turns out

to be the following:

⎛

⎜
⎝

s(1,1,1)

g(0,1,1)
1 t(1,0,0)

g(1,0,1)
2 t(0,1,0)

g(1,1,0)
3 t(0,0,1)

⎞

⎟
⎠

123

Generalized persistence algorithm for decomposing. . . 307

5.4 Time complexity

Now we consider the time complexity for computing presentation and decomposition
together. Let n be the size of the input filtration, that is, total number of simplices
obtained by counting new simplices added to the filtration (at most one new simplex
at a grid point of Zd). We consider three different cases as before:

Multiparameter, 0-dimensional homology: In this case, the presentation matrix [∂1]
where ∂1 : C1 → C0 has size O(n)×O(n). So, we can take N = O(n) in Eqn. (4) for
the time complexity analysis of decomposition. Therefore, the total time complexity
for this case is O(n2ω+1).
2-parameter, multi-dimenisonal homology: In this case, as described in section 5.2,
first we compute a basis G(Z p) that is presented in the basis of Cp. This is done by
the algorithm of Lesnick and Wright (2019) (henceforth called LW-algorithm) which
runs in O(n3) time. Using [G(Z p)], we compute the presentation matrix [∂̄p+1] as
described in section 5.2. This can be done in O(n3) time assuming that G(Z p) has at
most n elements. The presentation matrix is decomposed with TOTDIAGONALIZE as
in the previous case. However, to claim that it runs in O(n2ω+1) time, one needs to
ensure that the basis G(Z p) has O(n) elements. This follows from the fact that Z p is
a free submodule of the free module Cp which has rank n.

Multiparameter, multi-dimenisonal homology: In this case, we need to compute
a generating set G(Z) for Z = Z p and then a generating set G(Y 1) for the 1st
Syzygy module Y 1. Both of these generating sets can be computed by the algorithm
of Skryzalin (2016) (Theorem 2.6.4). The algorithm considers O(nd−2) slices of 2-
parameter modules and generates the basis for each of them in O(nd+1) total time.
This also implies that the size of the basis the algorithm computes is at most O(n ·
nd−2) = O(nd−1).

Next, we compute a generating set G(Y 1) for the syzygy module Y 1. Recall that

Y 1 ker f0
↪→ Z p where F0

f0→ Z p. Taking the generating set computed in the previous

step as a basis for F0 and observing that ker f0 = ker f̄0 where F0
f0→ Z p

i
↪→ Cp and

f̄0 = i ◦ f0 we can compute a generating set G(Y 1) in terms of a basis of G(Z p) using
the algorithm of Skryzalin again. Again, each of the O(nd−2) 2-parameter slices will
generate at most O(n) basis elements giving a total of O(nd−1) basis elements.

The matrix [G(Y 1)] appended with the matrix [δ̄p], becomes the presentation
matrix for Hp of size O(nd−1) × O(nd−1). The decomposition algorithm on such
a matrix takes at most O(n(d−1)(2ω+1)).

In summary, we have the following time complexity:

– d-parameter 0-dimensional case: O(n2ω+1).
– d-parameter multi-dimensional case(general case): O(nd+1)+O(n(d−1)(2ω+1)) =

O(n(d−1)(2ω+1)).

123

308 T. K. Dey, C. Xin

6 Persistent graded Betti numbers and blockcodes

For 1-parameter persistence modules, the traditional persistence algorithm computes
a complete invariant called the persistence diagram (Edelsbrunner and Harer 2010)
which also has an alternative representation called barcodes (Carlsson and Zomoro-
dian 2009). As a generalization of the traditional persistence algorithm, it is expected
that the result of our algorithm should also lead to similar invariants. We propose two
interpretations of our result as two different invariants, persistent graded Betti num-
bers as a generalization of persistence diagrams and blockcodes as a generalization
of barcodes.

Both of them depend on the ideas of free resolution and graded Betti numbers
which are well studied in commutative algebra and are first introduced in TDA by
Knudson (2007). A brief introduction to free resolutions and their construction are
given in “Appendix A”. Here, we focus more on the two invariants mentioned above.
In a nutshell, a free resolution is an extension of free presentation. Consider a free
presentation of M as depicted below.

Y 1

F1 F0 M

ker f 0

f 1
im f 1

f 0=coker f 1

If the presentation map f 1 has nontrivial kernel, we can find a nontrivial map f 2 :
F2 → F1 with im f 2 = ker f 1, which implies coker f 2 ∼= im f 1 = ker f 0 = Y 1.
Therefore, f 2 is in fact a presentation map of the first syzygy module Y 1 of M . We
can keep doing this to get f 3, f 4, . . . by constructing presentation maps on higher
order syzygy modules Y 2,Y 3, . . . of M , which results in a diagram depicted below,
which is called a free resolution of M .

Y 3 Y 2 Y 1

· · · F3 F2 F1 F0 M

ker f 2 ker f 1 ker f 0

f 3
im f 3

f 2
im f 2

f 1
im f 1

f 0=coker f 1

Free resolution is not unique. However, there exists an essentially unique minimal
free resolution in the sense that any free resolution can be obtained by summing the
minimal free resolution with a free resolution of a trivial module. For a graded module
M , consider the multiset consisting of the grades of homogeneous basis elements for
each F j in the minimal free resolution of M . We record the multiplicity of each grade
u ∈ Zd in this multiset, denoted as βM

j,u. Then, the mapping βM
(−,−) : Z≥0×Zd → Z≥0

can be viewed as an invariant of graded module M , which is called the graded Betti
numbers of M . By applying the decomposition of module M 	 ⊕

Mi , we have

for each indecomposable Mi , the refined graded Betti numbers βMi = {βMi

j,u | j ∈
N,u ∈ Zd}. We call the set PB(M) := {βMi } persistent graded Betti numbers of
M . For the working Example 1, the persistent graded Betti numbers are given in two
tables listed in Table 1.

123

Generalized persistence algorithm for decomposing. . . 309

One way to summarize the information of graded Betti numbers is to use the
Hilbert function, which is also called dimension function (Dey and Xin 2018) in TDA
defined as:

dmM : Zd → Z≥0 dmM(u) = dim(Mu)

Fact 6 There is a relation between the graded Betti numbers and dimension function
of a persistence module as follows:

∀u ∈ Zd , dmM(u) =
∑

v≤u

∑

j

(−1) jβ j,v

Then for each indecomposable Mi , we have the dimension function dmMi . We
call the set of dimension functions Bdm(M) := {dmMi } the blockcode of M .

For our working example, the dimension functions of indecomposable summands
M1 and M2 are:

dmM1(u) =
{
1 if u ≥ (1, 0) or u ≥ (0, 1)

0 otherwise
dmM2(u) =

{
1 if u = (1, 1)

0 otherwise
(5)

They can be visualized as in Fig. 11.
The information which can be read out from graded Betti numbers and dimension

functions are similar. We take the dimension functions of our working example as an
example. For dmM1, two connected components are born at the two left-bottom cor-
ners of the purple region. They are merged together immediately when they meet at
grade (1, 1). After that, they persist forever as one connected component. For dmM2,
one connected component born at the left-bottom corner of the square green region.
Later at the grades of left-top corner and right-bottom corner of the green region, it
is merged with some other connected component with smaller grades of birth. There-
fore, it only persists within this green region.

Remark In general, both persistent graded Betti numbers and blockcodes are not suf-
ficient to classify multiparameter persistence modules, which means they are not
complete invariants. As indicated in Carlsson (2009), there is no complete discrete
invariant for multiparameter persistence modules. However, interestingly, these two
invariants are indeed complete invariants for interval decomposable modules like this
example, which are recently studied in Botnan and Lesnick (2018), Bjerkevik (2016)
and Dey and Xin (2018).

6.1 Analogy with 1-parameter persistencemodules

In this section, we draw an analogy between the well known invariants, persistent
diagrams and barcodes, in 1-parameter persistence modules and the invariants which
we called the persistent graded Betti numbers and blockcodes respectively.

123

310 T. K. Dey, C. Xin

Table 1 Persistence grades

PB(M) = {βM1
, βM2

}
βM1

(1, 0) (0, 1) (1, 1) (2, 1) (1, 2) (2, 2) · · ·
β0 1 1

β1 1

β≥2

βM2
(1, 0) (0, 1) (1, 1) (2, 1) (1, 2) (2, 2) · · ·

β0 1

β1 1 1

β2 1

β≥3

All nonzero entries are listed in this table. Blank boxes indicate 0
entries

Fig. 11 dmM1 and dmM2. Each colored square represents an 1-dimensional vector space k and each

white square represents a 0-dimensional vector space. In the left picture, M1 is generated by v
0,1
b , v

1,0
r

which are drawn as a blue dot and a red dot respectively. They are merged at (1, 1) by the red edge er .

In the right picture, M2 is generated by v
(1,1)
g + t(0,1)v1,0r which is represented by the combination of

the green circle and the red circle together at (1, 1). After this point (1, 1), the generator is mod out to be
zero by relation of eg starting at (2, 1), represented by the green dashed line segment, and by relation of
eb + t(0,1)er starting at (1, 2), represented by the blue dashed line segment connected with the red dashed
line segment

We first give an illustration of the decomposition of an 1-parameter persistence
module with a simple example.

Consider the persistence module for the 0th homology group induced by the 1-
parameter simplicial filtration shown in Fig. 12. The 0th homology group encodes the
connected components. From the simplicial filtration, first we can see that the number
of connected components from grades 1 to 5 are (1, 2, 2, 1, 1). This corresponds to
the dimensions of homology vector space at each grade, which is also called the
dimension function of the persistence module. Three vertices in blue, red, and green
constitute three generators denoted as g1, g2, g3 for homology groups introduced at
grades 1, 2, and 3 respectively. In the filtration, g2 is merged with g1 at grade 3, and
g3 is merged with g2 (hence also g1) at grade 4.

123

Generalized persistence algorithm for decomposing. . . 311

Fig. 12 An example of 1-parameter simplicial filtration and its barcode

The persistence algorithm computes the decomposition of this persistence module
which results in a decomposition consisting of three indecomposable components.
Each one of them corresponds to one generator. The persistence diagram summarizes
the result as three pairings of grades: (2, 3), (3, 4), and (1,∞). The explanations are:

(2,3): The generator g2 born at grade 2 is merged with a generator born earlier than
it at grade 3.

(3,4): The generator g3 born at grade 3 is merged with a generator born earlier than
it at grade 4.

(1, ∞): The generator g1 born at grade 1 is never merged with some other generator.

The barcode represents the graph of dimension functions of each component in the
decomposition. From the barcode of the example illustrated in figure 12, we can track
directly when each generator gets born, merges (dies), and persists during its lifetime.

For multiparameter persistence, we aim to compute a summary which encodes
similar information as in the 1-parameter case. Consider the simplicial bi-filtration for
the working Example 1. Similar to our example in the 1-parameter case, we have three
generators g0,1, g1,0, g1,1 which are born at grades (0, 1), (1, 0), (1, 1) respectively.

As shown in 4.3, the decomposition consists of two indecomposable component.
One corresponds to g0,1, g1,0, and the other corresponds to g1,1. Roughly speak-
ing, the reason we cannot decompose g0,1 and g1,0 further is that their birth time
are incomparable based on standard partial order of grades in Z2. When they merge
together at grade (1, 1), neither one of them could be claimed to be merged with the
other one having an earlier grade. So we have to keep them together in the same inde-
composable component. However, for g1,1, when it is merged with g0,1 and g1,0 at
grades (2, 1) and (1, 2) respectively, both g0,1 and g1,0 have earlier grades than g1,1.

Note that this explanation of decomposability based on the comparability of grades
of generators does not always work as in 1-parameter case. That is why the decom-
position in multiparameter case is much more complicated. But it is interesting to ask
when this rule works in multiparameter case.

If we check the blockcode illustrated in Fig. 11, we can see that for the first com-
ponent, two generators are born at the two left-bottom corner of the purple region,
which are grades (0, 1), (1, 0). They are merged immediately at grade (1, 1). After
that, none of them is merged with anything else. Therefore, the merged generator
persists forever. For the second component, one generator gets born at the left-bottom

123

312 T. K. Dey, C. Xin

corner of the green region, which is grade (1, 1). It persists in the green region. It
is stopped by something else at grades (1, 2) and (2, 1). Therefore, it cannot persist
beyond the green region.

7 Concluding remarks

In this paper, we propose an algorithm that generalizes the traditional persistence
algorithm to the general case of multiparameter persistence. Even if its utility was
clear, its design was illusive. The results of this algorithm are interpreted as invari-
ants we call persistent graded Betti numbers and blockcode, which can be viewed as
generalizations of the persistence diagram and the barcode computed with the tradi-
tional persistence algorithm. Specifically, our algorithm can be applied to determine
whether a distinctly graded persistence module is interval decomposable or block
decomposable, which plays important roles in the computation of bottleneck dis-
tances and interleaving distances (Asashiba et al. 2018; Botnan and Lesnick 2018;
Bjerkevik 2016; Dey and Xin 2018).

The assumption that no two columns nor rows have same grades is necessary for
our current algorithm. If we consider the persistence modules induced from filtration
functions in the space of all real valued functions, our assumption of distinct grad-
ing is a generic property meaning that almost all induced persistence modules satisfy
the assumption. However, it is still possible that in practice the induced persistence
module does not satisfy the assumption. Without this assumption, our algorithm com-
putes a (not necessarily total) decomposition which represents a total decomposition
of some persistence module M ′ which can be viewed as a perturbed version of the
original persistence module M by an arbitrarily small amount ε ∈ R (considering
grading Zd ⊆ Rd). That means, the interleaving distance between this M ′ and M is
arbitrarily small. The decomposition M ′ = ⊕M ′

j produced by our algorithm depends
on the order with which one breaks the ties. How useful is this proposed strategy in
practice? This question essentially relates to the question of "stability" of decomposi-
tion structures for which there is no satisfactory answer yet in the literature. Currently
there is no universal definition about the stability of the decomposition structure of
persistence modules. A simple way to address it is to find a matching with min-
imal bottleneck distance between two decomposition structures of two persistence
modules with some cost function chosen for each paired indecomposable compo-
nents. The most common cost function used so far is the interleaving distance. The
stability-like property under this setting is an active area of recent research. There
are some results of stability-like property on some special cases of multiparame-
ter persistence modules, such as rectangle decomposable, triangle decomposable,
block decomposable module and some other special interval decomposable mod-
ules (Botnan and Lesnick 2018). For general multiparameter persistence modules, we
know that the bottleneck distance can be much larger than the interleaving distance
(Bjerkevik 2016). One possible solution is that, based on the stability-like property
of rectangle decomposable modules and special interval decomposable modules, one
can approximate the original persistence modules with rectangle or interval decom-

123

Generalized persistence algorithm for decomposing. . . 313

posable modules with a similar decomposition structure which may provide some
stability-like property (Dey and Xin 2021).

We believe the two invariants that we discussed are interesting summaries contain-
ing rich information about the multiparameter persistence modules. It motivates some
interesting questions for future work. What kind of new meaningful pseudo-metrics
on the space of persistence modules can be constructed and computed based on these
invariants, and what are the relations between the new pseudo-metrics and the existing
pseudo-metrics like interleaving distance, bottleneck distance, multi-matching dis-
tance, and so on? How stable will these pseudo-metrics be?

The time complexity of our algorithm is more than O(n4) in the 2-parameter case.
An interesting question is if one can apply approximation techniques such as those
in Dey et al. (2016) and Sheehy (2013) to design an approximation algorithm with
time complexity o(n4). We also hope that most of the techniques for speeding up
computation in the traditional persistence algorithm, like those in Bauer et al. (2014),
Bauer et al. (2017), can be applied to our algorithm.

Acknowledgements This research is supported partially by the NSF grants CCF-1740761, CCF-2049010
and DMS-1547357. We acknowledge the influence of the BIRS Oaxaca workshop on Multiparameter
Persistence which partially seeded this work.

Declarations

Conflict of interest We declare that there is no conflict of interest as required by JACT.

Appendices

A Free resolution and graded Betti numbers

Here we introduce free resolutions and graded Betti numbers of graded modules.
Based on these tools, we give a proof of our Theorem 1.

Definition 13 For a graded module M , a free resolution F → M is an exact
sequence:

· · · F2 F1 F0 M 0
f 2 f 1 f 0

where each Fi is a
free graded R-module.

We say two free resolutions F ,G of M are isomorphic, denoted as F 	 G, if there
exists a collection of isomorphisms {hi : Fi → Gi }i=0,1,... which commutes with
f i ’s and gi ’s. That is,for all i = 0, 1, . . . , gi ◦ hi = hi−1 ◦ f i where h−1 is the
identity map on M . See the following commutative diagram as an illustration.

· · · F1 F0 M 0

· · · G1 G0 M 0

f 1

h1	

f 0

h0	 1

g1 g0

123

314 T. K. Dey, C. Xin

For two free resolutions F → M and G → N , by taking direct sums of free
modules Fi ⊕Gi and morphisms f i ⊕gi , we get a free resolution of M⊕N , denoted
as F ⊕ G.

Note that a presentation of M can be viewed as the tail part

F1 F0 M 0
f 1 f 0

of a free resolution F → M . Free resolutions
and presentations are not unique. But there exists a unique minimal free resolution in
the following sense:

Fact 7 For a graded module M, there exists a unique free resolution such that ∀i ≥
0, im fi+1 ⊆ mFi , wherem = (x1, . . . , xd) is the unique maximal ideal of the graded
ring R = k[x1, . . . , xd].
Definition 14 In a minimal free resolution F → M , the tail part

F1 F0 M 0
f 1 f 0

is called the minimal presentation of M and f 1 is called
the minimal presentation map of M .

Here we briefly state the construction of the unique free resolution without formal
proof. More details can be found in Bruns and Herzog (1998) and Römer (2001):

Construction A1 Choose a minimal set of homogeneous generators g1, . . . , gn of
M. Let F0 = ⊕n

i=1 R→gr(gi) with standard basis egr(g1)1 , . . . , egr(gn)n of F0. The
homogeneous R-map f 0 : F0 → M is determined by f 0(ei) = gi . Now the

1st syzygy module of M, S1 F0ker f 0
, is again a finitely generated graded R-

module. We choose a minimal set of homogeneous generators s1, . . . , sm of S1 and
let F1 = ⊕m

j=1 R→gr(s j) with standard basis e′gr(s1)
1 , . . . , e′gr(sm)

m of F1. The homo-

geneous R-map f 1 : F1 → F0 is determined by f 1(e′
j) = s j . By repeating this

procedure for S2 = ker f 1 and moving backward further, one gets a graded free
resolution of M.

Fact 8 Any free resolution of M can be obtained (up to isomorphism) from the mini-
mal free resolution by summing it with free resolutions of trivial modules, each with
the following form

· · · 0 Fi+1 Fi 0 · · · N =0 0
f i+1=1

Note that the only nontrivial morphism Fi+1 Fif i+1=1
is the identity map 1.

From the above constructions, it is not hard to see that this unique free resolution
is a minimal one in the sense that each free module F j has smallest possible size of
basis.

For this unique free resolution, for each j , we can write F j 	 ⊕
u∈Zd

⊕βM
j,u R→u

(the notation
⊕βM

j,u R→u means the direct sum of βM
j,u copies of R→u). The set {βM

j,u |
j ∈ N,u ∈ Zd} is called the graded Betti numbers of M . When M is clear, we might
omit the upper index in Betti number. For example, the graded Betti number of the
persistence module for our working Example 1 is listed as Table 2.

123

Generalized persistence algorithm for decomposing. . . 315

Table 2 All the nonzero graded
Betti numbers βi,u are listed in
the table

βM (1, 0) (0, 1) (1, 1) (2, 1) (1, 2) (2, 2) · · ·
β0 1 1 1

β1 1 1 1

β2 1

β≥3

Empty items are all zeros

Note that the graded Betti number of a module is uniquely determined by the
unique minimal free resolution. On the other hand, if a free resolution G → M with

G j 	 ⊕
u∈Zd

⊕γ M
j,u R→u satisfies γ M

j,u = βM
j,u everywhere, then G 	 F is also a

minimal free resolution of M .

Fact 9 βM⊕N∗,∗ = βM∗,∗ + βN∗,∗

Proposition 6 Given a graded module M with a decomposition M 	 M1 ⊕ M2, let
F → M be the minimal resolution of M, and G → M1 andH → M2 be the minimal
resolution of M1 and M2 respectively, then F 	 G ⊕ H.

Proof G ⊕ H → M is a free resolution. We need to show it is a minimal free reso-
lution. By previous argument, we just need to show that the graded Betti numbers of
G ⊕H → M1 ⊕ M2 coincide with graded Betti numbers of F → M . This is true by
the fact 9. ��

Note that the free resolution is an extension of free presentation. So the above
proposition applies to free presentation, which immediately results in the following
Corollary.

Corollary 1 Given a graded module M with a decomposition M 	 M1⊕M2, let f be
its minimal presentation map, and g, h be the minimal presentation maps of M1, M2

respectively, then f 	 g ⊕ h.

We also have the following fact relating morphisms:

Fact 10 ker(f 1 ⊕ f 2) = ker f 1 ⊕ ker f 2; coker(f 1 ⊕ f 2) = coker f 1 ⊕ coker f 2.

Based on the above statements, now we can prove Theorem 1

Proof (proof of Theorem 1) With the obvious correspondence [fi] ↔ [f]i , (2 ↔ 3)
easily follows from our arguments about matrix diagonalization in the main context.

(1 → 2) Given H 	 ⊕
Hi with the minimal presentation maps f of H : For each

Hi , there exists a minimal presentation map fi . By Corollary 1, we have f 	 ⊕
fi .

(2 → 1) Given f 	 ⊕
fi : Since H = coker f = coker(

⊕
fi) = ⊕

coker fi , let
Hi = coker fi , we have the decomposition H 	 ⊕

Hi .
It follows that the above two constructions together give the desired 1-1 correspon-

dence. ��

123

316 T. K. Dey, C. Xin

Proof (proof of Proposition 1) We start with (2). Consider the total decomposition f 	⊕
f i . By Remark 2, any presentation is isomorphic to a direct sum of the minimal

presentation and some trivial presentations. Let f 	 g ⊕ h with g being the minimal
presentation. So cokerh = 0. Let g 	 ⊕

g j and h 	 ⊕
hk be the total decompo-

sition of g and h. Note that ∀k, cokerhk = 0. Now we have coker f 	 ⊕
coker f i

with coker f i being either cokerg j or 0, by the essentially uniqueness of total decom-
position. With H 	 ⊕

cokerg j being a total decomposition of H by Remark 3,
and

⊕
coker f i = ⊕

cokerg j ⊕ 0, we can say that H 	 ⊕
coker f i is also a total

decomposition.
Now for (1). For any decomposition H 	 ⊕

Hi , it is not hard to see that each Hi

can be written as a direct sum of a subset of H j∗ ’s with H 	 ⊕
H j∗ being the total

decomposition of H . One just need to combine the f i ’s correspondingly in the total
decomposition of f 	 ⊕

f i to get the desired decomposition of f . ��

B Missing proofs in Sect. 4

Proposition (4) The target block A|T can be reduced to 0 while preserving the prior
if and only if A|T can be written as a linear combination of independent operations.
That is,

A|T =
∑

l /∈Row(T)
k∈Row(T)

αk,lXk,l |T +
∑

i /∈Col(T)
j∈Col(T)

βi, jYi, j |T (6)

where αk,l ’s and βi, j ’s are coefficient in k = F2.

Proof Everything in the statement of the proposition is restricted to T . For simplicity
of notations, we omit the lower script ≤ t by assuming A≤t = A, i.e., t = m is the
last column index. It can be verified that this omission does not affect the proof. The
simple reason is that because of the admissible rules of column operations, entries
beyond column t carried by any admissible operations will never affect entires in
A≤t .

Recall that Yi, j = A·[δi, j] for some (i, j) ∈ Colop and Xk,l = [δk,l]·A for some
(l, k) ∈ Rowop where

Colop = {(i, j) | ci → c j is an admissible column operation} ⊆ Col(A)

×Col(A) and

Rowop = {(l, k) | rl → rk is an admissible row operation} ⊆ Row(A) × Row(A)

Let I be the identity matrix. We say a matrix P is an admissible left multiplica-
tion matrix if P = I + ∑

Rowop αk,l [δk,l] for some (l, k) ∈ Rowop, αk,l ∈ {0, 1}.
Similarly, we say a matrix Q is an admissible right multiplication matrix if Q =
I + ∑

Colop βi, j [δi, j] for some (i, j) ∈ Colop, βi, j ∈ {0, 1}. In short, we just say P
and Q are admissible. ��

It is not difficult to observe the following properties of admissible matrices:

123

Generalized persistence algorithm for decomposing. . . 317

Fig. 13 (Left) A at iteration t during reduction of the sub-column ct |Row(B) for the block B = B2. (Right)
Target block T shown in magenta includes the sub-column of ct . It does not include B := B2. All rows
external to T have zeros in the columns external to T . All columns external to T have zeros in the rows
external to T . Red regions combined form R

Fact 11 Matrix A′ ∼ A is an equivalent matrix transformed from A by a sequence of
admissible operations if and only if A′ = PAQ for some admissible P and Q.

Fact 12 Admissible matrices are closed under multiplication and taking inverse.

Fact 13 For any admissible P, let S ⊆ Row(P) be any subset of row indices. Then
P|S×S is invertible.

For the last fact, observe that the matrix P|S×S can be embedded as a block of
an admissible matrix P′ constructed by making all off-diagonal entries of P whose
indices are not in S × S to be zero. The matrix P′ is obviously admissible. So by the
second fact, it is invertible. Also, P′ can be written in block diagonal form with two
blocks P′|S×S and P′|S̄×S̄ = I where S̄ = Row(P′) − S. Therefore, if P′ is invertible,
so is P|S×S = P′|S×S .

We write the matrix A in the following block forms with respect to B and T with
necessary reordering of rows and columns (see Fig. 13 for a simple illustration with-
out reordering rows and columns):

A =
[
R 0
T B

]

Here we abuse the notations of block and index block to make the expression more
legible. In the above block forms of A, for example, T represents the entries of A on
the index block T , that is the block A|T , which is the target block we want to reduce.
Note that

R = [
Row(A) \ Row(B), Col(A≤t) \ Col(B))

]

= [
⊕

Bi �=B

Bi] ∪ [
Row(A) \ Row(B), {t}]

which is the block obtained by merging all other previous index blocks together with
the sub-column of t excluding entries on Row(B). The right top block is zero since it
belongs to the intersections of rows and columns from different blocks.

123

318 T. K. Dey, C. Xin

Observe that, the target block T can be reduced to 0 in A with prior preserved if
and only if

PAQ := P·
[
R 0
T B

]

·Q =
[
R 0
0 B

]

(7)

for some admissible P and Q.
For ⇐ direction, consider P = I + ∑

αk,l [δk,l] and Q = I + ∑
βi, j [δi, j] with

binary coefficients αk,l ’s and βi, j ’s given in Equation 6. Then, we have

PAQ = (I +
∑

αk,l [δk,l])A(I +
∑

βi, j [δi, j]) (8)

= A +
∑

αk,l [δk,l]A +
∑

βi, jA[δi, j] +
∑∑

αk,lβi, j [δk,l]A[δi, j] (9)

= A +
∑

αk,l [δk,l]A +
∑

βi, jA[δi, j] (10)

= A +
∑

αk,lXk,l +
∑

βi, jYi, j (11)

The third Eq. (10) follows from Observations 3. After restriction to T , by the assump-
tion that

∑
αk,lXk,l + ∑

βi, jYi, j = A|T , we get PAQ|T = 0. By the definition of
independent operations and Observation 2, one can see that our P,Q solves Equa-
tion 7.

For ⇒, we will show that if the above equation is solvable, then there always exist
solutions P′ and Q′ in a simpler forms as stated in the following proposition.

Proposition 7 Equation (7) is solvable for some admissible P and Q if and only if it
is solvable for some admissible P′ and Q′ in the following form:

P′ =
[
I 0
U I

]

and Q′ =
[
I 0
V I

]

(12)

Before we prove Proposition 7, we show how one can prove the ⇒ direction in
Proposition 4 from it. Based on the equivalent condition Eq. 7 and Proposition 7, we
can write P′ and Q′ in formula 12 as

P′ = I +
∑

(l,k)∈
RowopR→T

αk,l [δk,l] Q′ = I +
∑

(i, j)∈
ColopB→T

βi, j [δi, j]

where RowopR→T = {(l, k) ∈ Rowop | (l, k) ∈ Row(R) × Row(T)} and
ColopB→T = {(i, j) ∈ Colop | (i, j) ∈ Col(B) × Col(T)}, and αk,l , βi, j ∈ {0, 1}.

123

Generalized persistence algorithm for decomposing. . . 319

Then, similar to Equation 11, we get

P′AQ′ = (I +
∑

(l,k)∈
RowopR→T

αk,l [δk,l])·A·(I +
∑

(i, j)∈
ColopB→T

βi, j [δi, j])

= A +
∑

(l,k)∈
RowopR→T

αk,l [δk,l]·A +
∑

(i, j)∈
ColopB→T

βi, jA·[δi, j]

+
∑

(l,k)∈
RowopR→T

∑

(i, j)∈
ColopB→T

αk,lβi, j [δk,l]·A·[δi, j]

= A +
∑

(l,k)∈
RowopR→T

αk,l [δk,l]·A +
∑

(i, j)∈
ColopB→T

βi, jA·[δi, j]

= A +
∑

(l,k)∈
RowopR→T

αk,lXk,l +
∑

(i, j)∈
ColopB→T

βi, jYi, j

By restriction on T we have

P′AQ′|T == A|T +
∑

(l,k)∈
RowopR→T

αk,lXk,l |T +
∑

(i, j)∈
ColopB→T

βi, jYi, j |T (13)

With P′AQ′|T = 0 by our assumption, we get

A|T =
∑

(l,k)∈
RowopR→T

αk,lXk,l |T +
∑

(i, j)∈
ColopB→T

βi, jYi, j |T

This is exactly what we want

A|T =
∑

l /∈Row(T)
k∈Row(T)

αk,lXk,l |T +
∑

i /∈Col(T)
j∈Col(T)

βi, jYi, j |T (14)

��
Now we give the proof of Proposition 7.

Proof of Proposition 7 The ⇐ direction is trivial. For the ⇒ direction, we want to
show that, if Eq. (7) is solvable for some admissible P andQ, then there exists admis-
sible P′ and Q′ so that

P′ =
[
I 0
U I

]

,Q′ =
[
I 0
V I

]

, and P
′·

[
R 0
T B

]

·Q′

=
[

R 0
UR + BV + T B

]

=
[
R 0
0 B

]

123

320 T. K. Dey, C. Xin

We write P and Q in corresponding block forms as follows:

P =
[
P1 P2
P3 P4

]

and Q =
[
Q1 Q2

Q3 Q4

]

(15)

From Eq. (7) one can get a set of equations

P1RQ2 + P2BQ4 = 0 (16)

P1RQ1 + P2BQ3 = R (17)

P3RQ2 + P4BQ4 = B (18)

P3RQ1 + P4BQ3 = T (19)

From Fact 13, we know that P1, P4, Q1, Q4 are invertible. By left multiplication with
P−1
1 and right multiplication with Q−1

4 on both sides of Eq. (16), one can get :

P−1
1 P1RQ2Q

−1
4 + P−1

1 P2BQ4Q
−1
4

= RQ2Q
−1
4 + P−1

1 P2B = 0
⇒ −RQ2Q
−1
4 = P−1

1 P2B (20)

Similarly, by left multiplication with P−1
1 on both sides of Eq. (17) and by right mul-

tiplication with Q−1
4 on both sides of Eq. (18), one can get the following equations:

P1RQ1 + P2BQ3 = R
⇒ RQ1 = P−1
1 R − P−1

1 P2BQ3 (21)

P3RQ2 + P4BQ4 = B
⇒ P4B = BQ−1
4 − P3RQ2Q

−1
4 (22)

Now from Eq. 19, we have:

T = P3RQ1 + P4BQ3

Equations 21 and 22

⇒ T = P3(P
−1
1 R − P−1

1 P2BQ3) + (BQ−1
4 − P3RQ2Q

−1
4)Q3

= P3P
−1
1 R + BQ−1

4 Q3 − P3P
−1
1 P2BQ3 − P3RQ2Q

−1
4 Q3

Equation 20

⇒ T = P3P
−1
1 R + BQ−1

4 Q3 − P3P
−1
1 P2BQ3 + P3P

−1
1 P2BQ3

= P3P
−1
1 R + BQ−1

4 Q3

LettingU = P3P
−1
1 and V = Q−1

4 Q3, we get the desired equation. Nowwe just need
to show that P′,Q′ are both admissible. We prove it forQ′. Similar proof holds for P′.
We want to show that for any (i, j) ∈ Row(V) × Col(V), if Q′

i, j = 1, then (i, j) ∈
Colop. From equality, V = Q−1

4 Q3, which implies Q′
i, j = ∑

k(Q
−1
4)i,k·(Q3)k, j =

1, we know that (Q−1
4)i,k = (Q3)k, j = 1 for some k. Since Q−1

4 and Q3 are both
blocks in the admissible matrix Q, by the definition of admissible left multiplication
matrix, we have (i, k), (k, j) ∈ Colop. Note that Colop is closed under transitive
relation by Proposition 2. So we have (i, j) ∈ Colop. ��

123

Generalized persistence algorithm for decomposing. . . 321

References

Asashiba, H., Buchet, M., Escolar, E.G., Nakashima, K., Yoshiwaki, M.: On interval decomposability of
2D persistence modules (2018). arXiv e-prints arXiv:1812.05261

Asashiba, H., Escolar, E.G., Nakashima, K., Yoshiwaki, M.: On approximation of 2d persistence modules
by interval-decomposables (2021)

Atiyah, M.: On the Krull–Schmidt theorem with application to sheaves. Bull. Soc. Math. Fr. 84, 307–317
(1956)

Bjerkevik, H.B., Botnan, M.B.: Computational complexity of the interleaving distance (2017). arXiv e-
prints arXiv:1712.04281

Bjerkevik, H.B., Botnan, M.B., Kerber, M.: Computing the interleaving distance is NP-hard. Found. Com-
put. Math. 20, 1237–1271 (2020)

Botnan, M.B., Lesnick, M.: Algebraic stability of zigzag persistence modules. Algebraic Geom. Topol. 18,
3133–3204 (2018)

Bauer, U., Kerber, M., Reininghaus, J.: Distributed computation of persistent homology. In: Algorithm
Engineering and Experimentation, pp. 31–38 (2014)

Bauer, U., Kerber, M., Reininghaus, J., Wagner, H.: Phat—persistent homology algorithms toolbox. J.
Symb. Comput. 78, 76–90 (2017)

Bjerkevik, H.: Stability of higher-dimensional interval decomposable persistence modules (2016). arXiv
e-print arXiv:1609.02086

Botnan, M.B., Lebovici, V., Oudot, S.Y.: On rectangle-decomposable 2-parameter persistence modules. In:
36th International Symposium on Computational Geometry, SoCG 2020, Volume 164 of LIPIcs, pp.
22:1–22:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)

Botnan, M.B., Oppermann, S., Oudot, S.: Signed barcodes for multi-parameter persistence via rank decom-
positions and rank-exact resolutions (2021)

Bruns, W., Herzog, H.J.: Cohen-Macaulay Rings. Cambridge University Press, Cambridge (1998)
Buchet, M., Escolar, E.G.: Every 1D persistence module is a restriction of some indecomposable 2D per-

sistence module (2019). arXiv e-prints, arXiv:1902.07405
Bunch, J.R., Hopcroft, J.E.: Triangular factorization and inversion by fast matrix multiplication. Math.

Comput. 28, 231–236 (1974)
Cai, C., Kim, W., Mémoli, F., Wang, Y.: Elder-rule-staircodes for augmented metric spaces. In: 36th Inter-

national Symposium on Computational Geometry (SoCG 2020). Schloss Dagstuhl-Leibniz-Zentrum
für Informatik (2020)

Carlsson, G.: Topology and data. Bull. Am. Math. Soc. 46(2), 255–308 (2009)
Carlsson, G., Mémoli, F.: Persistent clustering and a theorem of J. Kleinberg (2008). arXiv e-print

arXiv:0808.2241
Carlsson, G., Zomorodian, A.: The theory of multidimensional persistence. Discrete Comput. Geom. 42(1),

71–93 (2009)
Carlsson, G., Singh, G., Zomorodian, A.: Computing multidimensional persistence. In: International Sym-

posium on Algorithms and Computation, pp. 730–739. Springer (2009)
Cerri, A., Fabio, B.D., Ferri, M., Frosini, P., Landi, C.: Betti numbers in multidimensional persistent homol-

ogy are stable functions. Math. Methods Appl. Sci. 36(12), 1543–1557 (2013)
Cerri, A., Ethier, M., Frosini, P.: On the geometrical properties of the coherent matching distance in 2D

persistent homology (2018). arXiv e-prints arXiv:1801.06636
Cochoy, J., Oudot, S.Y.: Decomposition of exact pfd persistence bimodules. Discrete Comput. Geom.

63(2), 255–293 (2020)
Cohen-Steiner, D., Edelsbrunner, H., Morozov, D.: Vines and vineyards by updating persistence in linear

time. In: Proc. 22nd Annu. Sympos. Comput. Geom., pp. 119–126 (2006)
Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete Comput. Geom.

37(1), 103–120 (2007)
Corbet, R., Kerber, M.: The representation theorem of persistence revisited and generalized. J. Appl. Com-

put. Topol. 2(1), 1–31 (2018)
Cox, D.A., Little, J., O’shea, D.: Using Algebraic Geometry, vol. 185. Springer, Berlin (2006)
Dey, T.K., Xin, C.: Computing bottleneck distance for 2-d interval decomposable modules. In: 34th Interna-

tional Symposium on Computational Geometry, SoCG 2018, June 11–14, 2018, Budapest, Hungary,
pp. 32:1–32:15 (2018)

123

http://arxiv.org/abs/1812.05261
http://arxiv.org/abs/1712.04281
http://arxiv.org/abs/1609.02086
http://arxiv.org/abs/1902.07405
http://arxiv.org/abs/0808.2241
http://arxiv.org/abs/1801.06636

322 T. K. Dey, C. Xin

Dey, T.K., Xin, C.: Rectangular approximation and stability of 2-parameter persistence modules (2021).
arXiv e-print arXiv:2108.07429

Dey, T.K., Wang, Y.: Computational Topology for Data Analysis. Cambridge University Press, Cambridge
(2022)

Dey, T.K., Shi, D., Wang, Y.: Simba: An efficient tool for approximating Rips-filtration persistence via
simplicial batch-collapse. In: European Symposium on Algorithms, vol. 35, pp. 1–16 (2016)

Dey, T.K., Kim,W., Mémoli, F.: Computing generalized rank invariant for 2-parameter persistence modules
via zigzag persistence and its applications (2021). arXiv:2111.15058

Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. Applied Mathematics. American
Mathematical Society, Providence (2010)

Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. In: Proceed-
ings 41st Annual Symposium on Foundations of Computer Science, pp. 454–463. IEEE (2000)

Eisenbud, D.: The Geometry of Syzygies: A Second Course in Algebraic Geometry and Commutative
Algebra, vol. 229. Springer, Berlin (2005)

Hatcher, A.: Algebraic Topology. Cambridge Univ. Press, Cambridge (2000)
Hilbert, D.: Ueber die theorie der algebraischen formen. Math. Ann. 36(4), 473–534 (1890)
Holt, D.F.: The meataxe as a tool in computational group theory. In: London Mathematical Society Lecture

Note Series, pp. 74–81 (1998)
Holt, D.F., Rees, S.: Testing modules for irreducibility. J. Aust. Math. Soc. 57(1), 1–16 (1994)
Ibarra, O.H., Moran, S., Hui, R.: A generalization of the fast lup matrix decomposition algorithm and

applications. J. Algorithms 3(1), 45–56 (1982)
Kerber, M., Lesnick, M., Oudot, S.: Exact computation of the matching distance on 2-parameter persistence

modules. In: 35th International Symposium on Computational Geometry (SoCG 2019), Volume 129
of Leibniz International Proceedings in Informatics (LIPIcs), pp. 46:1–46:15 (2019)

Kim, W., Mémoli, F.: Generalized persistence diagrams for persistence modules over posets. J. Appl. Com-
put. Topol. 5(4), 533–581 (2021)

Knudson, K.P.: A refinement of multi-dimensional persistence (2007). arXiv e-print arXiv:0706.2608
Lesnick, M.: The theory of the interleaving distance on multidimensional persistence modules. Found.

Comput. Math. 15(3), 613–650 (2015)
Lesnick, M., Wright, M.: Interactive visualization of 2-D persistence modules (2015). arXiv e-prints

arXiv:1512.00180
Lesnick, M., Wright, M.: Computing minimal presentations and Betti numbers of 2-parameter persistent

homology (2019). arXiv e-prints arXiv:1902.05708
Liu, S., Maljovec, D., Wang, B., Bremer, P.T., Pascucci, V.: Visualizing high-dimensional data: advances

in the past decade. IEEE Trans. Vis. Comput. Graph. 23(3), 1249–1268 (2017)
Miller, E., Sturmfels, B.: Combinatorial commutative algebra (2004)
Patel, A.: Generalized persistence diagrams (2016). arXiv e-print arXiv:1601.03107
Römer, T.: On minimal graded free resolutions. Ill. J. Math 45(2), 1361–1376 (2001)
Sheehy, D.R.: Linear-size approximations to the vietoris-rips filtration. Discrete Comput. Geom. 49(4),

778–796 (2013)
Skryzalin, J.: Numeric invariants from multidimensional persistence. Ph.D. thesis, Stanford University

(2016)
Weibel, C.A.: An Introduction to Homological Algebra, vol. 38. Cambridge University Press, Cambridge

(1995)
Oudot, S.Y.: Persistence Theory: From Quiver Representations to Data Analysis, vol. 209. American Math-

ematical Society, Providence (2015)
Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput. Geom. 33(2), 249–274

(2005)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/2108.07429
http://arxiv.org/abs/2111.15058
http://arxiv.org/abs/0706.2608
http://arxiv.org/abs/1512.00180
http://arxiv.org/abs/1902.05708
http://arxiv.org/abs/1601.03107

	Generalized persistence algorithm for decomposing multiparameter persistence modules
	Abstract
	1 Introduction
	1.1 Other related work
	1.2 Outline

	2 Persistence modules
	3 Presentation and its decomposition
	4 Computing decomposition
	4.1 Simplification of presentation matrix
	4.2 Total diagonalization algorithm
	4.3 Running TotDiagonalize on the working Example 1

	5 Computing presentations
	5.1 Multiparameter filtration, zero-dimensional homology
	5.2 2-parameter filtration, multi-dimensional homology
	5.3 Multiparameter filtration, multi-dimensional homology
	5.4 Time complexity

	6 Persistent graded Betti numbers and blockcodes
	6.1 Analogy with 1-parameter persistence modules

	7 Concluding remarks
	Acknowledgements
	Appendices
	A Free resolution and graded Betti numbers
	B Missing proofs in Sect. 4
	References

